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Abstract

In this report, a model of human sequence learning
is developed called the linear associative shift reg-
ister (LASR). LASR uses a simple error-driven as-
sociative learning rule to incrementally acquire in-
formation about the structure of event sequences.
In contrast to recent modeling approaches, LASR
describes learning as a simple and limited process.
We argue that this simplicity is a virtue in that
the complexity of the model is better matched to
the demonstrated complexity of human process-
ing. The model is applied in a variety of situations
including implicit learning via the serial reaction
time (SRT) task and statistical word learning. The
results of these simulations highlight commonali-
ties between different tasks and learning modalities
which suggest similar underlying learning mecha-
nisms.

Introduction
One of the most striking aspects of human behavior
is the ease with which we can acquire new skills with
little conscious effort. In order to better understand
this phenomena, a large literature has developed ex-
ploring the ability of participants to implicitly learn
about the sequential structure of a series of events
(see Cleeremans, Destrebecqz, Boyer, 1998, for a re-
view). However, the type of memory and learning
mechanisms which might support such learning are
not well understood (see Keele, Ivry, Mayr, Hazel-
tine, & Heuer, 2004 or Sun, Sluzarz, & Terry, 2005
for some recent proposals).

In this paper, we develop a simple model of se-
quence learning behavior called the linear associa-
tive shift-register (LASR). The model is unique from
past approaches in that it describes implicit se-
quence learning as a simple and limited process
which operates on a small temporary buffer of past
events. This contrasts with other models of sequence
learning which have described learning as a more
complex and flexible process (Cleeremans & McClel-
land, 1991; Cleeremans, 1993; Sun et al., 2005).

There are two main goals of this report. First, we
explore the ability of this simple model to account
for sequential learning phenomena in a variety of
implicit learning situations including the serial reac-
tion time (SRT) task and statistical word learning

paradigms. LASR provides a similar account of the
type of processing which underlies performance in
both kinds of tasks, suggesting that they may rely
on similar underlying mechanisms.

Second, we demonstrate how a very simple learn-
ing mechanism such as LASR can provide a detailed
account of a number of findings from the implicit
sequence learning literature. A key criticism we de-
velop is that in previous modeling accounts (such
as the simple recurrent network (SRN) of Cleere-
mans, 1993), the complexity of the model is not
well matched to the demonstrated complexity of the
learner. While LASR cannot explain all aspects of
our rich sequential behavior, we believe the model
provides a unique baseline against which to test more
complex theories and experiments.

We begin by introducing the LASR model and the
principles upon which it is based. Next, we consider
a study conducted by Lee (1997) assessing implicit
learning of sequentially structured material. Finally,
we explore the ability of LASR to account for statis-
tical word learning in infants as reported by Saffran,
Aslin, and Newport (1996).

The Linear Associative Shift-Register
(LASR) Model

LASR is a mechanistic model of implicit sequence
learning. The model describes implicit sequence
learning as the task of appreciating the associative
relationship between past events and future ones.
LASR assumes that subjects maintain a limited
memory for the sequential order of past events and
that they use a simple error-driven associative learn-
ing rule (Widrow & Hoff, 1960; Rescorla & Wagner,
1972) to incrementally acquire information about se-
quential structure. Despite it’s simplicity, the model
can very quickly learn to appreciate rather complex
dependencies between events which are structured in
time. The model is organized around 3 principles:

1. Past events are stored in a temporary
buffer The model begins by assuming a simple
shift-register memory for past events. Individual el-
ements of the register are referred to as slots. New
events encountered in time are inserted at one end
of the register and all past events are accordingly



shifted one time slot. Thus, the most recent event is
always located in the right-most slot of the register
(see Figure 1). This form of memory maintains the
sequential order of recent events using spatial posi-
tion (see Sejnowski and Rosenberg (1987) or Cleere-
man’s (1993) buffer network for similar approaches).
2. Learning to predict what comes next This
simple memory mechanism forms the basis of a
detector (see Figure 1). A detector is a simple,
single-layer linear network or perceptron (Rosen-
blatt, 1958) which learns to predict the occurrence
of a single future event based on past events. Be-
cause each detector predicts only a single event, a
separate detector is needed for each possible event.
Each detector has a weight from each event out-
come at each time slot. On each trial, activation
from each memory-register slot is passed over a con-
nection weight and summed to compute the acti-
vation of the detector’s prediction unit. The task
of a detector is to adjust the weights from individ-
ual memory slots so that it can successfully predict
the future occurrence of it’s response. Each detec-
tor learns to strengthen the connection weights for
memory slots which prove predictive of the detec-
tor’s response while weakening those which are not
predictive or are counter-predictive.
3. Recent events have more influence on
learning than past events The model assumes
that events in the recent past are remembered better
than events which happened long ago. This effect is
implemented by attenuating the activation strength
of each register position by how far back in time
the event occurred. Because of this, an event which
happened at time t− 1 has more influence on future
predictions than events which happened at t−2, t−3,
etc... Similarly, learning is slower for slots which are
positioned further in the past because their activa-
tion strength is reduced (see Equation 3).

Model Formalism

The following section describes the mathematical
formalism of the model. The model is easily de-
scribed using three equations and three intuitive pa-
rameters.
Memory As illustrated at the top of Figure 1,
input to the model on each time step is a N -
dimensional vector mt where each entry mt

i corre-
sponds to the presence (mt

i = 1) or absence (mt
i = 0)

of event i on the current trial, t. The complete his-
tory of past events is thus a NxP matrix, M, where
N is the number of possible events, and P is the
number of events so far experienced and stored in
memory. The shift-register memory of past events
is indexed based on the current time t. Thus, mt−1

refers to the input vector experienced on the previ-
ous time step, and mt−2 refers to the input experi-
enced two time steps in the past.
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Figure 1: A shift-register memory and a single detec-
tor. New events encountered enter into the register
from the right and are stored in the sequence they
arrived in the memory register.

Response Given N possible events or choice op-
tions, the model has N detectors. The activation
dk of the detector k at the current time, t, is com-
puted as the weighted sum of all events in all slots
multiplied by an exponential attenuation factor:

dk =
P∑

i=1

N∑
j=1

w(t−i)jk · mt−i
j · e−α·(i−1) (1)

where w(t−i)jk is the weight from the jth out-
come at time slot t − i to the kth detector, and
mt−i

j · e−α·(i−1) is the outcome of the jth option at
time t− i multiplied by the memory attenuation fac-
tor. The α is a free parameter which controls the
rate of decay for traces in memory. The final output
of each detector, ok, is a sigmoid transform of the
activation, dk, of each detector, ok = (1 + edk)−1.

When being compared to human data, the out-
put of each detector is converted into a response
probability or tendency (pk) using the Luce choice
rule (Luce, 1959):

pk =
ok∑N

j=1 oj

(2)

For example, human reaction time is assumed to in-
versely relate to this response tendency so that faster
responses in the task correspond to higher values of
pk (Cleeremans & McClelland, 1991).

Learning Learning in the model is implemented
using the well known delta-rule for training single
layer networks (Widrow & Hoff, 1960) with a small
modification introduced by Rumelhart and McClel-
land (1986) (sometimes referred to as the generalized
delta-rule for single layer networks). For each detec-
tor, the difference between the actual outcome of the



current trial, tk, and the output of the detector, ok,
is computed and used to adjust the weights:

∆wijk = η · (tk − ok) ·mi
j · e−α·(i−1) · dk(1− dk) (3)

The ∆wijk value is added to the corresponding
weight after each learning episode. The η is a learn-
ing rate parameter and e−α·(i−1) is the memory at-
tenuation factor described above and dk(1 − dk) is
a factor representing the derivative of the sigmoid
transfer function with respect to the weights which
moves learning on each trial in the direction of gradi-
ent descent on the error. In the simulations reported
here α = 0.2 and η = 0.9.

Evaluating the LASR model

In the following section we explore the ability of this
model to account for a number of published findings
concerning implicit sequence learning. The results
illustrate how the simple principles which define the
LASR model are able to provide a strong account of
learning and show the relationship between the data
collected across a number of paradigms.

Sequence Learning via the SRT task
The majority of SRT studies have used simple re-
peating sequences of various lengths. One notable
exception is Lee (1997). In this study, the pat-
tern of stimuli was determined by a simple, yet sub-
tle rule: each of six choice options had to be vis-
ited once in each set of six trials in a random or-
der. Examples of legal six-element sequence sets are
132546, 432615, and 546123. Boyer, Destrebecqz,
and Cleeremans (1998) provide a replication of Lee
(1997) and showed that reaction time monotonically
decreases as a function of set position 1-6 (see Fig-
ure 2, top panel).

What is unique about the sequence employed by
Lee (1997) is that while it is generated by a simple
rule, each stimulus item can be followed by any other
item. The key predictive structure is contained in
the set of six successive elements which avoid repe-
tition. Can the simple one-layer associative learning
mechanism in LASR account for such a result?

Simulation Results LASR was applied to the
task in a similar manner to how participants were
trained with the same number of trials and the
same sequential structure as the Boyer, Destrebecqz,
and Cleeremans (1994) replication. On each trial,
the response probability of the correct response was
recorded. Figure 2 (top panel) shows the model’s
response as a function of position. At the first set
position, the model’s error is about 0.83 which is
chance (i.e, 5/6) but as more of the sequence is re-
vealed, the model continues to reduce this error.

Perhaps surprisingly, the model is able to replicate
the key qualitative results of the study despite hav-
ing no mechanism for parsing or grouping sequence
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Figure 2: Top: Human reaction time and model re-
sponse as a function of set position in Boyer, Destre-
becqz, and Cleeremans’ (1998). Bottom: Human
and model response as a function of the lag separat-
ing two occurrences of the same event. All human
data replicated approximately from figures in Boyer,
et al. (1998)

elements. A closer look at how the model solves
the problem gives some insight into the structure of
the task. Figure 3 shows the setting of each of the
weights in the model at the end of learning. The
key pattern to notice is that the diagonal entries for
each past time slot are strongly negative while all
other weights are close to zero. The diagonal of each
weight matrix represents the weight from each event
to it’s own detector. Thus, the model attempts to
inhibit any response that occurred in the last few
trials.

The impact of this is demonstrated in Figure 2
(bottom panel) which shows response probability as
a function of the number of events separating two re-
peated events (lag). Since the same event could not
repeat on successive trials, repeated events were at
minimum separated by 1 event (lag-1). This might
happen if the fifth event of one sequence repeated
as the first element of the next sequence. Figure 2
(bottom) shows that as the lag between two repeated
events increases, the model accurately predicts faster
RT. The memory attenuation of past events causes
them to become less inhibited as they move further
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Figure 3: The final LASR weights for the Lee (1997) sequence learning problem. Negative weights are darker
red. Positive weights are darker blue. The weights leaving each memory slot (t − 1, t − 2, etc...) are shown
as a separate matrix. Each matrix shows the weights from each stimulus element to each detector. For
example, the red matrix entry in the top left corner of t-1 slot is the weight from event “1” to the detector
for event “1”.

into the past (i.e., events at lag-10 are more strongly
inhibited than events at lag-1). Boyer, et al. (1998)
examined this same lag effect in the reaction time of
participants in their replication and found an iden-
tical effect (also shown in Figure 2, bottom panel).
Participant RT was inversely related to the num-
ber of trials that separated the repeated event. The
model describes performance in the task as a simple
negative recency effect.

Boyer, et al. (1998) explored how the SRN ac-
counted for human performance in this task. The
SRN provides a similar conceptual account by learn-
ing to increase the likelihood of an response as a
function of the number of events since last expe-
rienced. However, the learning mechanism of the
SRN is much more complicated than that of LASR
because the model must acquire appropriate hidden
unit representations in addition to adjusting weights
in the upper layer of the network. As a result, Boyer,
et al. (1998) had to train the SRN on considerably
more trials than humans or LASR. Both humans and
LASR were trained for 4320 trials (24 blocks of 180
trials each), whereas the SRN was trained for 30,240
trials. In addition, the hidden unit representations
the SRN acquires are difficult to interpret because
the model learns to predict successors of particular
aggregate contexts. Instead, LASR clearly describes
performance in the task as a simple negative recency
effect, where recent events are inhibited.

Boyer, et al. (1998) point out that in both their
replication and in the original Lee (1997) study, par-
ticipants demonstrate a faster reaction time to the
latter elements of the each sequence even in the
first block of learning and the magnitude of this ef-
fect remains relatively constant throughout learn-
ing. Given the natural prevalence of the gambler’s
fallacy (i.e. negative recency) in sequential decision
making tasks, it’s possible that some kind of pre-
existing biases influenced their performance in the
task (Gilovich, Vallone, & Tversky, 1985; Jarvik,
1951; Nicks, 1959). LASR also shows the learning
effect in Figure 2 (top panel) in the first block of
learning. However, assuming Boyer, et al.’s inter-
pretation is correct (and not a floor effect of RT as
participants gain experience in the task), it would be

straightforward to simulate an initial bias in LASR
by initializing the learning weights with a slightly
negative value instead of zero at the beginning of
learning. However, it is less clear in the SRN how
such an initial response bias could be accounted for.

Statistical Word Learning
It is clear from the previous simulations that despite
it’s simplicity, LASR can provide an accurate de-
scription of sequential learning behavior in the SRT.
However, a key question remains concerning the gen-
erality of these findings: is sequential learning in the
SRT sub-served by similar mechanisms as other ar-
eas of cognitive processing which rely on sequence
processing? To evaluate this hypothesis, we apply
LASR to the infant word learning study conducted
by Saffran, Aslin, and Newport (1996).

Saffran et al. (1996) familiarized 8-month-old
infants with a 2-minute recording of a computer-
synthesized voice evenly reading a continuous stream
of syllables at an even tempo. The stream was com-
posed of four three-syllable nonsense words which
were repeated in random order (examples word are
“tu-pi-ro” and “go-la-bu”). The only cues concern-
ing the beginning and end of words in the stream
was the transitional probabilities between syllables
which were higher between two syllables which oc-
curred together within a words than between two
syllables which spanned word boundaries.

On each trial of the test phase, infants were pre-
sented with repetitions of one of four three-syllable
test strings. In Experiment 1, two of the test words
were the same nonsense words which were presented
during the familiarization phase while the remaining
two were three syllable non-words which contained
the same syllables heard during the familiarization
phase but in a different order than they appeared
in the initial phase. In Experiment 2, the test phase
contrasted knowledge about words versus part-words
where part-words consisted of syllables arranged in
the same order as during familiarization, without
directly corresponding to any of the words used to
generate the familiarization sequence. The results of
both studies are shown in Figure 4 and indicate that
infants were able to discriminate words from both
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Figure 4: Comparison of infant and LASR results
for Saffran, et al. (1996) Experiment 1 and 2

non-words (Experiment 1) and part-words (Exper-
iment 2) as reflected by longer listening times for
the latter test stimuli. These findings demonstrate
that infants are able to extract information about
the statistical properties of a sequence given even a
short incidental exposure to auditory stimuli.
Simulation Results To simulate these results
with LASR, each syllable was treated as a separate
event in the model. In both Experiment 1 and 2
there were 12 possible syllables, thus the model had
12 detectors. On each simulated trial, the model at-
tempted to predict the next syllable in the sequence
given the syllables which it had experienced so far.

During each trial of the the test phase, the mem-
ory register was cleared by setting all values back
to zero and the output of the correct detector was
recorded following the presentation of each syllable
of the test sequence. In order to compare infant
looking time and model performance (a necessarily
indirect relationship), the output ok of the correct
detector for each syllable of the test sequence was
summed to compute an overall familiarity score for
the test item. These familiarity scores were then
related to looking time via linear regression.

Figure 4 shows resulting performance of the model
averaged over 1000 simulated experiments. The
model predicts increased looking time for both non-
words and part-words. Examination of the final set-
ting of the detector weights reveal that the weights
grow to approximate the transitional probabilities
between syllables at different lags in the training se-
quence.

LASR provides a similar account of sequence
learning in both the Lee (1997) and Saffran, et al.
(1996) experiments. In each case, the model’s weight
grow to approximate the lag-n transition probabili-
ties in the sequence (i.e. the probability of an event
at time t given a particular event on on trial t − n,
Remillard & Clark, 2001). This learning mechanism
natural picks up on the statistical structure of the
sequence and allows it to extract what might appear

to be segmented knowledge about the sequence. The
SRN has also been used to explain sequential word
learning results similar to those studied by Saffran,
et al. (Elman, 1990). However, the type of informa-
tion acquired by the SRN differs from LASR because
the SRN is capable of learning the true second or-
der conditional probabilities due to it’s hidden unit
representations. The testing procedure used with in-
fants does not distinguish between these two types
of learning, but, (as these simulations show) the sim-
pler lag-n statistic is sufficient to account for learn-
ing.

Conclusions and Discussion

The results of these simulations offer two conclu-
sions. First, we provide further support for the hy-
pothesis that sequential learning behavior in both
the SRT and statistical word learning paradigm may
be driven by similar underlying principles. Other
evidence in support of this hypothesis includes the
fact that the type of sequential learning demon-
strated by infants with artificial syllable languages
has replicated to more general auditory stimuli such
as tones (Saffran, Johnson, Aslin, & Newport, 1999)
and to motor sequences in the SRT task (Hunt &
Aslin, 2001) suggesting that this type of processing
is not specific to linguistic material. Cross-species
comparisons show that non-human primates are also
able to discriminate words and non-words in the syl-
lable task, again in support of the idea that learning
in such tasks is not a property of a specific language
processing system (Conway & Christiansen, 2001).

Second, we showed how a simple, single layer
learning mechanism is able to account for findings
which have previously been accounted for using more
complex mechanisms. A full evaluation of LASR
is not possible in this short paper, but preliminary
work suggests that the model provides a similar
account of the processes underlying implicit learn-
ing in many other studies. With this in mind, we
offer LASR model as a possible “null” model for
implicit sequence learning studies. It is important
when developing models based on indirect measures
of knowledge (such as reaction time) that theories
aren’t developed which reach beyond the data. We
argue that LASR provides a tight match between
the complexity of the model and the demonstrated
processing complexity of the learner. In this sense,
our argument bears some resemblance to other ar-
guments put forward in the SRT literature (Per-
ruchet, Gallego, & Savy, 1990; Reed & Johnson,
1994; Remillard & Clark, 2001). However, we build
upon these criticisms by providing a viable modeling
framework which shows promise as both an expla-
nation and as a tool.
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