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Abstract
The ability to act on the world with the goal of gaining information is core to human adaptability and intelligence. Perhaps the
most successful and influential account of such abilities is the Optimal Experiment Design (OED) hypothesis, which argues
that humans intuitively perform experiments on the world similar to the way an effective scientist plans an experiment. The
widespread application of this theory within many areas of psychology calls for a critical evaluation of the theory’s core
claims. Despite many successes, we argue that the OED hypothesis remains lacking as a theory of human inquiry and that
research in the area often fails to confront some of the most interesting and important questions. In this critical review, we
raise and discuss nine open questions about the psychology of human inquiry.
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Introduction

The ability to ask questions, collect information, and
actively explore one’s environment is a powerful tool for
learning about the world. How do people decide which
information to collect in any given situation? One influential
idea is that information-seeking or inquiry behaviors are
akin to scientific experiments. According to this metaphor,
a child shaking a new toy, a student asking a question, or a
person trying out their first smartphone, can all be compared
to a scientist conducting a carefully designed experiment
to test their hypotheses (Gopnik, 1996; Montessori, 1912;
Siegel et al., 2014). The core assumption in this work is that
people optimize their queries to achieve their learning goals
in the most efficient manner possible.

To model everyday inquiry as scientific experimentation,
psychologists have been inspired by the concept of “optimal
experiment design” (OED) from the statistics literature
(Fedorov, 1972; Good, 1950; Lindley, 1956). OED is a
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general statistical framework that quantifies the value of
a possible experiment with respect to the experimenter’s
beliefs and learning goals and can help researchers plan
informative experiments. The psychological claim is that
humans perform “intuitive experiments” that optimize the
information gained from their action in a similar way.
Within psychology, the OED hypothesis has been applied in
many different areas including question asking, exploratory
behavior, causal learning, hypothesis testing, and active
perception (for overviews, see Gureckis & Markant, 2012;
J. D. Nelson, 2005; Schulz, 2012b).

It is easy to see why this metaphor is attractive to
psychologists. Not only does the OED hypothesis offer an
elegant mathematical framework to understand and predict
information-seeking behaviors, it also offers a flattering
perspective on human abilities by suggesting that everyone
is, on some level, an intuitive scientist. However, the
status of OED as the dominant formal framework for
studying human inquiry calls for a critical evaluation of its
explanatory merits.

This paper addresses two overarching issues concerning
the current use of OED as a psychological theory.
First, existing OED models rely on a wealth of non-
trivial assumptions concerning a learner’s prior knowledge,
beliefs, cognitive capacities, and goals. Our analysis
critically examines these assumptions and lays out future
research directions for how to better constrain these choices.
Second, some forms of human inquiry cannot be easily
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expressed in terms of the OED formalism. For example,
inquiry does not always start with an explicit hypothesis
space, and it is not always possible to compute the expected
value of a question. To that end, we highlight research
questions that lie outside the realm of the OED framework
and that are currently neglected by the focus on inquiry as
scientific hypothesis testing.

Our hope is that this paper will serve both as a critical
comment on the limits of the OED hypothesis within
psychology and a roadmap of some of the hardest but most
interesting psychological questions about human inquiry.
The main part of the paper takes the form of laying out
nine questions about inquiry. For each question, we review
the current literature on the topic, examine how past work
has dealt with particular challenges, and suggest promising
future directions for work within and outside the OED
framework. Before turning to these nine key questions, we
review the origin and core principles of the OED hypothesis,
and its history within psychology. We then consider how
best to evaluate the past successes of the framework.

Human inquiry as optimal experiments

The metaphor of intuitive human inquiry as scientific exper-
imentation dates to the 1960s. This early work compared
people’s hypothesis testing to philosophical norms of sci-
entific experimentation, and most prominently to principles
of falsification (Popper, 1968). Falsification turns out to
be a relatively poor description of human behavior, how-
ever, and is now widely rejected as an explanatory model
(Klayman & Ha, 1989; Klayman, 1995; Nickerson, 1998;
Wason, 1960). In contrast, the OED framework, which was
inspired by Bayesian norms of experiment design from
statistics (Horwich, 1982), has a number of successes as
a predictive theory and is gaining in popularity among
psychologists.

The origins and use of OEDmodels

OED methods were originally developed as statistical
tools to help researchers plan more informative scientific
experiments (Good, 1950; Fedorov, 1972; Lindley, 1956).
The idea is to create some formal measure of the
“goodness” of a particular experiment with respect to the
possible hypotheses that the experimenter has in mind.
Using this normative measure, researchers can then choose
an experiment that is most conducive to discriminating
among the possible hypotheses. This is an alternative to
experiments that are intuitively designed by researchers
themselves but that might not be optimally informative.
For example, a cognitive scientist studying human memory
might choose different delay intervals for a recall test
following study. Parameters like these are typically set using

intuition (e.g., to cover a broad range of values). An OED
method might instead output specific time intervals that
have the best chance to differentiate competing theories
(e.g., a power law or exponential forgetting function, see
Myung & Pitt, 2009). The advantage of the OED method is
that seemingly arbitrary design choices are made based on
principled analyses of the researcher’s current knowledge
about possible hypotheses (or models).

Starting from a problem or situation that the experimenter
(or human learner) is attempting to understand, most OED
models are based on the following components (see below
for more mathematical detail):

1. A set of hypotheses (e.g., statistical models or range of
parameter values) the experimenter or learner wants to
discriminate among;

2. A set of experiments or questions that the experimenter
or learner can choose from (e.g., parameters of a design
or types of conditions);

3. A model of the data that each experiment or ques-
tion could produce, given the experimenter’s current
knowledge;

4. A measure of the value of these outcomes with
respect to the hypotheses (e.g., the difference in model
likelihood, or confidence about parameter values).

Together, these components enable a researcher to
compute an “expected value” of every possible experiment,
and choose the experiment that maximizes this value. This
involves a preposterior analysis (Raiffa & Schlaifer, 1961),
during which experimenters have to simulate the potential
outcomes of every experiment and compute how helpful
each of these outcomes would be for achieving their goal.

OED methods have been used by experimenters to
improve parameter estimation and model comparison. For
example, psychologists have used them to discriminate dif-
ferent memory models (Cavagnaro, Myung, Pitt, & Kujala,
2010; Myung & Pitt, 2009), to compare models of tem-
poral discounting (Cavagnaro, Aranovich, Mcclure, Pitt, &
Myung, 2014), to improve teaching tools for concept learn-
ing (Rafferty, Zaharia, & Griffiths, 2014), to fit psychophys-
ical functions (Kim, Pitt, Lu, Steyvers, & Myung, 2014),
and even to discriminate between different models of human
inquiry (Nelson et al., 2010).

Aside from scientific applications, OED concepts are
also widely used in machine learning to develop algorithms
that rely on active learning. Such algorithms have the
capacity to self-select their training data in order to learn
more efficiently (Mackay, 1992; Murphy, 2001; Settles,
2010). For example, they can decide when to ask a human
to provide a label of an unclassified training instance (e.g.,
a document). Active learning is especially useful when
it is costly or time-consuming to obtain such corrective
feedback.
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OEDmodeling in psychology

Somewhat separately from these applied domains,
researchers in psychology have used the OED formalism
as a theory or hypothesis about human inquiry behavior.
OED models have been used to explain how young children
ask questions or play with an unfamiliar toy (Bonawitz
et al., 2010; Cook, Goodman, & Schulz, 2011; Gopnik,
2009; McCormack, Bramley, Frosch, Patrick, & Lagnado,
2016; Nelson et al., 2014; Ruggeri & Lombrozo, 2015;
Schulz, Gopnik, & Glymour, 2007), how people ask about
object names in order to help them classify future objects
(Markant & Gureckis, 2014; Nelson et al., 2010; Nelson,
Tenenbaum, & Movellan, 2001), and how people plan inter-
ventions on causal systems to understand how variables
are causally related to one another (Bramley, Lagnado, &
Speekenbrink, 2015; Steyvers, Tenenbaum, Wagenmakers,
& Blum, 2003). They can also model how learners would
search an environment to discover the position of objects in
space (Gureckis & Markant, 2009; Markant & Gureckis,
2012), and where they would move their eyes to maximize
the information learned about a visual scene (Najemik &
Geisler 2005, 2009). Figure 1 illustrates how these basic
components of the OED framework might map onto an
everyday scenario facing a human learner.

What is common to all these approaches is the claim that
the mind operates, at least indirectly, to optimize the amount
of information available from the environment just as OED

methods optimize the information value of experiments. It is
the broad application and success of this theory that makes
it both interesting and worthy of critical evaluation. We will
start our discussion of the OED framework by laying out its
principles in more mathematical detail.

Formal specification of OEDmodels

An OED model is a mathematical way to quantify the
expected value of a question, query, or experiment for
serving a learner’s goals. The basic approach is related
to expected utility models of economic decision making,
but uses utilities that are informational in nature, rather
than costs and benefits of correct or incorrect decisions.
Importantly, OED models are designed to not depend on
which hypotheses a researcher personally favors or dislikes.
OED models define the expected utility of a question as the
average utility of that question’s possible answers. Formally,
a question Q = {a1, a2, ...am} is a random variable with
possible answers a1, a2, ...am. The expected utility of that
question, EU(Q), is defined as the average utility that will
be obtained once its answer is known, i.e.: EU(Q) =∑

aj ∈Q P(Q = aj )U(Q = aj ).
Utility can be any function that measures a learner’s

progress towards achieving their goal of inquiry, which
could be pure information gathering, planning a choice, or
making a judgment. The learner’s goal is often to identify
the correct hypothesis. The possible hypotheses (or states

Hmmmmm............

Our hero presented with an ambiguous
situation and an inquiry goal

Evaluate queries - Think about possible
questions and their possible answers. Choose the best

Optimal Experiment Design Approach to Inquiry

I’d like to know what is going on

Learned
something

new!

Consider hypotheses

Ah! That explains it!

Maybe the bag smells

Maybe the cat got scared 
and is trying to hide!

Maybe my friend
wants to sell the cat!

 Did you hear a loud noise?

Are you in any financial trouble?

Was there food in the bag?
Yup. I spilled some yoghurt in there.

Yes!

Yes!

No!

No!

Yes!

No!

Was there food in the bag?

Was there food in the bag?

Was there a loud noise?

Are you in any financial trouble?

Fig. 1 An overview of human inquiry from the perspective of OED
theories. Such theories begin with an ambiguous situation that pro-
vokes an inquiry goal. For example, the learner might wonder why
the cat is in a bag. In thinking about how to best obtain the answer,
the learner is assumed to consider alternative hypotheses about the
explanation. Next, the learner evaluates possible actions or questions

they could ask. Such questions are evaluated largely on how informa-
tive the answers to the questions would be. Finally, a question is chosen
and the learner updates their belief based on the answer. OED theo-
ries capture the information processing elements within the thought
bubbles
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of the world) are defined by a random variable H =
h1, h2, ...hn. Many OED utility functions are based on the
prior and possible posterior probabilities of each hypothesis
h ∈ H , and on how the distribution of probabilities would
change according to each possible answer that could be
obtained.

For concise notation in this paper, rather than writing
out both the random variable and the value that it takes,
we will specify the value that the random variable takes.
For instance, suppose we wish to denote the probability that
a specific question Q, if asked, would result the specific
answer a. Rather than writing P(Q = a), we will write
P(a). It is important to emphasize that a specific answer a is
associated with a specific question Q. Or suppose we wish
to denote the probability of a specific hypothesis h, given
that question Q has been asked and that answer a has been
obtained. Rather than writing P(H = h|Q = a), we will
simply write P(h|a). Thus, the expected utility (usefulness)
of a question Q can be concisely written as

EU(Q) =
∑

a∈Q

P(a)U(a) (1)

A learner is typically faced with a set of possible questions
{Q}. (The curly braces denote that we are referring to
a set of questions, Q1, Q2, Q3, ..., each of which is a
random variable, rather than to a specific single question.)
To determine the optimal question, a learner has to calculate
the expected utility of each possible individual question
by simulating the possible answers of each question,
calculating the usefulness of each answer, and weighting
each possible answer’s usefulness as in Eq. 1.

One of the most prominent OED usefulness functions
is the expected value of a learner’s gain in information
or reduction in uncertainty (Austerweil & Griffiths, 2011;
Cavagnaro, Myung, Pitt, & Kujala, 2010; Lindley, 1956;
Najemnik & Geisler, 2005; Nelson et al., 2014; Oaksford
& Chater, 1994). A common metric of uncertainty is
Shannon entropy, although alternative ways of measuring
the value of an outcome will also be discussed below. The
information gain of a particular answer, a, to question Q, is
the difference between the prior and the posterior entropy:

UIG(a) = ent (H) − ent (H |a) (2)

The prior Shannon entropy is

ent (H) =
∑

h∈H

P (h) log
1

P(h)
= −

∑

h∈H

P (h) logP (h), (3)

and the posterior entropy is

ent (H |a) =
∑

h∈H

P (h|a) log
1

P(h|a)

= −
∑

h∈H

P (h|a) logP (h|a) (4)

where the posterior probability of each particular hypothesis
h is derived using Bayes’ (1763) rule:

P(h|a) = P(h)P (a|h)/P (a). (5)

The combination of Eqs. 1 and 2 yields the Expected
Information Gain (EIG) of a query, EUIG(Q).

How psychologists develop OEDmodels of inquiry

To illustrate how the key components of the OED frame-
work can be mapped onto different experiment paradigms
in psychology, consider the list of examples in Table 1.
What is impressive about this list is the broad range
of human behaviors that have been modeled by way of
the OED hypothesis. While this table gives a cursory impres-
sion, in the following section we review in detail three
example studies that use OED to model hypothesis testing,
causal learning, and children’s exploratory play. We partic-
ularly aim to highlight what types of conclusions theorists
have drawn from their models and behavioral findings.

Example 1: Logical hypothesis testing

In the most well-known psychological application of OED,
Oaksford and Chater (1994) revisit the classic Wason card
selection experiment (Wason, 1966). The experiment tests
whether people are able to logically test hypotheses by
falsifying them, that is, by checking that there are no counter
examples to a logical rule. Participants are asked to test for
a simple conditional rule involving a set of four cards. The
four cards are labeled “A”, “K”, “2”, or “7” and participants
are asked to test if “cards with a vowel on one side have
an even number on the other side” (a rule of the form, if p,
then q). The dependent measure is which of the four cards
participants turn over. (Participants are allowed to select all,
none, or any subset of the four cards.) An often-replicated
pattern of results is that most people select the “A” (p) card,
many choose the “2” (q) card and few choose the “7” (not-q)
card. This pattern of preferences violates the logical norms,
which dictate that one needs to test “A” (p) and “7” (not-q),
but not “2” (q). The “7” card (not-q) card is crucial, because
it could potentially be a counterexample if it had a vowel on
the other side.

To explain the discrepancy between people’s choices and
reasoning norms, Oaksford and Chater (1994) interpret the
task as a problem of inductive inference (how does a learner
anticipate to change their beliefs based on data), rather than
as checking for violation of a logical rule. Oaksford and
Chater propose that people choose queries to reduce their
uncertainty about two hypotheses: The dependence hypoth-
esis specifies that the logical rule holds perfectly. The
independence hypothesis specifies that the letters (A vs K)
are assigned independently of the numbers (2 and 3) on the
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Table 1 How the main OED components map onto particular research topics in psychology

Examples Inquiry Goal Hypotheses (H ) Queries (Q) Answers (a)

Causal Learning
(Bramley et al., 2015;
Steyvers et al., 2003;
Coenen, Rehder, &
Gureckis, 2015)

What is the structural pat-
tern of how different vari-
ables in a system influ-
ence one another?

Causal models that relate
the variables of the sys-
tem in different ways
(e.g., causal Bayes nets).

Setting the value of
one or more variables
through an intervention.

The effects of making an inter-
vention on the causal system.

Categorization
(Markant & Gureckis,
2014; Markant, Settles,
& Gureckis, 2015;
Nelson et al., 2010)

What types of shapes are
called “daxes”?

Rules about category
membership (e.g., “all
red things are daxes”).

Different category mem-
bers or objects to test.

The category membership of
the queried item.

Spatial Search
(Gureckis & Markant,
2009; Markant &
Gureckis, 2012; Rothe
et al., 2016)

What is the hidden
spatial pattern?

Different hypotheses
about the identity of
hidden patterns.

Tiles to turn over in a
game or verbal questions
that can be asked about
the pattern.

The color of a hidden tile or
information about the pattern.

Eye movements
(Najemnik &
Geisler, 2005)

Where should I move
my eyes next to search
for a target?

Possible target loca-
tions within the
visual field.

Locations to move the
eyes.

What is visible as a particular
location.

Rule learning
(Wason, 1960; Klay-
man & Ha, 1989;
Nelson, Tenenbaum,
& Movellan, 2001)

What rule determines
if a sequence numbers
is valid or invalid?

A rule about number
sequences (e.g., “odd,
increasing numbers”).

Different sequences of
numbers (e.g., “’2-4-6’).

Valid or invalid according to
the rule.

Twenty Questions
(Nelson et al., 2014;
Ruggeri & Lom-
brozo, 2015; Mosher
& Hornsby, 1966)

What object does the
answerer have in mind?

All possible objects,
animals, or people.

Features of the object
(e.g., “is it blue?’).

Yes or No.

Logical Reasoning
(Wason, 1966; Oaks-
ford & Chater, 1994)

Find out if cards with
vowels have even num-
bers on the other side.

Vowels always predict
even numbers or the two
are independent.

Turn over cards with a
vowel, consonant, odd,
or even number.

Symbol on the other side
of the card.

other side of the cards. Oaksford and Chater compute the
expected information gain (see Eq. 2 above) for each query
(card). The model assigns values to different queries (each
of the four cards that can be turned over) and considers possible
outcomes from these queries (observing a vowel, conso-
nant, even number, or odd number). In the model, Oaksford
and Chater further assume that the “A” and the “2” are rare,
that is, learners do not expect many cards to have either
vowels or even numbers on them. Given these assumptions,
it turns out that the expected information gain from test-
ing “2” is actually greater than that of testing “7”, which
matches the pattern of behavior often found in this task.

In this article, Oaksford and Chater (1994) apply OED
methods as part of a rational analysis of the card selection
task (Anderson, 1990) that uses an optimal model to capture
people’s behavior given some additional assumptions, but
without any commitment to a particular set of cognitive
processes that underlie this behavior. Regarding the actual
implementation of the computation, the authors note that
“The reason that people conform to our analysis of
the selection task might be due to innate constraints or

learning, rather than sophisticated probabilistic calculation.”
(Oaksford & Chater, 1994, p. 628). This is an example
of a successful OED analysis that does not involve
any algorithmic or implementational claim. Oaksford and
Chater’s model also illustrates how researchers in the
rational analysis framework have often adopted assumptions
that make human behavior seem reasonable, rather than
looking for deviations from a particular set of logic- or other
norm-based assumptions of how people should behave.

Example 2: Causal learning

Another type of inquiry that has been modeled with
OED norms is causal intervention learning. Steyvers,
Tenenbaum, Wagenmakers, and Blum (2003) used expected
information gain to predict which variables participants
would manipulate to figure out the underlying causal
relationships. In their experiment, participants first spent
some time passively observing the behavior of a causal
network of mind-reading aliens. The aliens’ thoughts were
depicted as strings of letters appearing over their heads.
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Participants were told to figure out which aliens could read
which other aliens’ minds (which resulted in them thinking
the same thought as the one they were reading from). After
the observation phase, participants gave an initial guess
about how they thought the aliens were causally connected.
Then, they were asked to make an intervention by inserting
a thought into one of the aliens’ heads and observing the
thoughts of the other aliens.

Again, the authors modeled these choices using an OED
model based on expected information gain, which aims
to reduce the uncertainty about possible causal structure
hypotheses. Here, queries corresponded to the different
aliens that could have a thought inserted, and outcomes
corresponded to all possible ways in which the other
aliens could change their thoughts as a consequence. The
hypothesis space contained possible causal structures that
described how the aliens were connected (i.e., who could
read whose mind). The authors considered a number of
implementations of the OED model that differed with
respect to the space of hypotheses. An unconstrained
version of the model, which considered all possible causal
structures connecting the aliens, was not a good fit to
people’s choices. However, a more constrained version,
which assumed that people were only comparing their top
hypothesis to its own subgraphs (i.e., graphs containing
a subset of the edges of the most likely graph) and an
unconnected graph, fit the human data well.

The authors concluded that “people bring to bear infer-
ential techniques not so different from those common in
scientific practice... they choose targets that can be expected
to provide the most diagnostic test of the hypotheses they ini-
tially formed through passive observation.” Steyvers et al.,
(2003, p. 486). Unlike the previous example, this conclusion
suggests that people actually implement the underlying com-
putations associated with the OED model. This interpreta-
tion is also common in work on OED models of inquiry.

Example 3: Exploratory play

Finally, consider an example from the developmental
literature on children’s capacities for inquiry. Cook,
Goodman, and Schulz (2011) gave preschoolers different
information about the causal properties of toys (beads)
and examined their subsequent behavior during exploratory
play. Children were either shown that all beads were
causally effective (they could turn on a machine and make
it play music) or that only some beads are effective (some
could not turn on the machine). Subsequently, children were
given a new set of two beads that were attached to each
other. Children who had learned that only some beads are
effective proceeded to take apart the two new beads and test
them with the machine individually. By contrast, children
who had previously learned that all beads worked rarely
bothered to check the new beads individually.

This behavior can also be modeled with expected
information gain, by assuming that learners are choosing
between three possible queries (testing both beads, testing
the first bead, and testing the second bead) and anticipating
one of two outcomes (the machine turning on or not). The
experimenter’s demonstration is designed to set children’s
hypotheses about the new pair of connected beads. Chil-
dren in the all-beads-work condition only have a single hypo-
thesis (both beads work), while those in the some-beads-
work condition have four (both work, one works, the other
works, neither works). To reduce their uncertainty about
these hypotheses, the model predicts that the beads must be
tested in isolation, which matches the behavioral data.

This example illustrates a trend in the developmental lit-
erature to draw analogies between children and scientists.
Without making concrete algorithmic claims, Cook, Good-
man, and Schulz (2011) interpret their findings as evidence
that even young children optimize information gain dur-
ing inquiry in a scientific manner, and conclude that “these
results tighten the analogy to science that has motivated con-
temporary theories of cognitive development” (Cook et al.,
2011, p. 348).

These three examples illustrate not only different psycho-
logical applications of OED models but also the different
types of explanatory claims that OED analyses have supported,
ranging from the computational-level observation that people
behave as if they optimize informational value (in Oaksford
& Chater, 1994) to the more ambitious idea that people,
like scientists, actually implement OED computational prin-
ciples to some degree (in Steyvers et al., 2003). Although
the actual explanatory claims may vary significantly from
study to study, a common thread remains the tight analogy
between empirical science and human information-seeking.

It should be noted that the history of psychology also
offers examples of researchers using the OED framework
to support the opposite claim that human information-
seeking does not follow rational and scientific principles.
For example, some studies in the heuristics and biases
tradition (Kahneman, Slovic, & Tversky, 1982) highlighted
ways in which human judgments deviate from OED norms
(Baron, Beattie, & Hershey, 1988; Skov & Sherman, 1986;
Slowiaczek, Klayman, Sherman, & Skov, 1992). Similarly,
prior to the Bayesian approach used by Oaksford and Chater
(1996), research on logical rule learning showed many
discrepancies between OED principles and human behavior
(Klayman & Ha, 1987; Klayman, 1995; Wason, 1960).
Despite this history, the people-as-scientists metaphor has
by far outweighed these accounts in recent years.

Merits of the OED hypothesis

The OED approach has greatly contributed to the study of
human inquiry. Perhaps most saliently, it has provided a
computationally precise approach to some very open-ended

Psychon Bull Rev (2019) 26:1548–1587 1553



aspects of human behavior. In addition, the OED hypothesis
provides a theoretical account of diverse information-
seeking behaviors, ranging from visual search to question
asking. In doing so, it also builds a theoretical bridge
to models of a wide array of other cognitive processes,
which, on the surface, bear little or no resemblance to
information search. For example, Information Gain and
related principles have been used in models of receptive
properties of visual neurons (Ruderman, 1994; Ullman,
Vidal-Naquet, & Sali, 2002)and auditory neurons (Lewicki,
2002). They are also key components of recent models of
visual saliency, which predict human eye movements as a
function of image properties (Borji & Itti, 2013; Itti & Baldi,
2005; Itti & Baldi, 2006; Zhang, Tong, Marks, Shan, &
Cottrell, 2008). They also connect to Friston and colleagues’
(e.g., 2009, 2017) free energy principles, which posit that
all neuronal activity is aimed at minimizing uncertainty (or
maximizing information).

Finally, the close connections between OED models in
psychology and formalmethods in mathematics, physics, statis-
tics, and epistemology make it straightforward for psy-
chological theory to benefit from advancements in those
areas. For example, research in computer science on com-
putationally efficient active learning machines has inspired
new theoretical approaches to inquiry behavior in humans
(Markant, Settles, & Gureckis, 2015; Rothe et al., 2016).

Limitations of the OED hypothesis

Despite its successes, this article critically examines some
of the basic elements of the OED research approach. Our
critique springs from two main points, which, at first glance,
may seem contradictory. On the one hand, applications
of the OED framework in psychology often rely on a
wealth of non-trivial assumptions about a learner’s cognitive
capacities and goals. There is a risk that this makes the
models too flexible to generate testable predictions. On
the other hand, we will argue that the framework is in
some cases not rich enough to capture the broad types of
inquiry behavior exhibited by humans. These later cases are
particularly important because, as OED gains in popularity
as a theoretical framework, there is a risk that important
aspects of behavior are being overlooked.

Elaborating on the first point, the three example studies
reviewed above demonstrate a frequent research approach
that is shared by many applications of the OED hypothesis
within psychology. First, it is assumed that people inquire
about the world around them in order to maximize gain
in knowledge. Second, this assumption is instantiated as
a specific OED model which assigns values to different
questions, queries, or actions in a particular task. Finally,
additional assumptions about cognitive processes (hypothe-
ses, priors, etc.) may be added to the model to improve its fit.

Importantly, this research strategy does not set out
to directly test the core claims of the OED hypothesis.
For some researchers the framework provides a set of
starting assumptions and novel psychological insights are
more likely to emerge from modifications of a model’s
peripheral components that get adjusted in the light of
behavioral data. For instance, in Oaksford and Chater’s
(1994) analysis of the card selection task the model fits
behavior under the assumption that events (p and q)
occur rarely. Similarly, Steyvers et al.’s (2003) best-fitting
rational test model relies on a very restricted space of
causal graph hypotheses. It is common for OED models
to rely on very specific assumptions, but less common
for researchers to treat these assumptions as discoveries in
their own right. The rarity prior in Oaksford and Chater
(1994) is an exception in this respect and provides a good
example of integration between OED models and their
assumptions. The rarity assumption is implicated in other
hypothesis testing research, has normative support from
the Bayesian literature, and it has generated a number
of follow-up studies that systematically manipulate it and
find that behavior changes accordingly (McKenzie, Ferreira,
Mikkelsen, McDermott, & Skrable, 2001; Oaksford &
Chater, 1996; Oaksford, Chater, Grainger, & Larkin, 1997).
In general, however, it is rare for OED applications to exa-
mine and justify their auxiliary assumptions in such detail.

This general lack of integration between a formal frame-
work and its assumptions about requisite cognitive compo-
nents is a common criticism leveled against other classes
of models, particularly Bayesian approaches for mode-
ling higher-level cognition (Jones & Love, 2011; Marcus
& Davis, 2013). Importantly, as both critics and defenders
of Bayesian models have pointed out (see peer commen-
tary on Jones & Love, 2011), this kind of criticism does not
require rejecting the entire framework, but can be addressed
by promoting greater efforts towards theory integration at
different levels of explanation (e.g., computational, algorith-
mic, and ecological). The same holds for OED models of
inquiry. Many of the current limitations of the framework
could be overcome by moving beyond the mere metaphor of
people as intuitive scientists and beginning to take the role
of auxiliary assumptions seriously. This is the approach we
advocate in some parts of this paper.

On the second point, there are also ways in which using
the OED hypothesis as a starting assumption limits the kinds
of behavior studied in the field. Recall that to make an
inquiry problem amenable to an OED analysis, a researcher
must quantify the set of hypotheses a learner considers,
their prior beliefs over these hypotheses, the set of possible
queries available to them, and their probability model for
the outcome of each query. As we will note throughout
this paper, there are many kinds of inquiry behaviors that
would be difficult or impossible to express in those model
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terms, either because they are not based on the same
components (e.g., inquiry in the absence of well-defined
hypotheses), because of the computational complexity of
applying OED, or because we do not yet know how to
specify them computationally as part of a model (e.g.,
query types with computationally complex outcomes). Of
course, no psychological theory is able to capture every
single interesting cognitive phenomenon in a broad area
like inquiry. However, we believe that it is important to pay
close attention to the kinds of limits a theory imposes and
make sure they do not lead to an overly narrow focus on
a small set of questions that happen to be amenable to a
particular analysis. Our review highlights the challenges of
capturing important inquiry behaviors with OED and aims
to encourage future research in these directions. We also
highlight a number of questions that fall entirely outside of
the purview of OED analyses, but that we believe deserve
more attention in the study of human inquiry.

Nine questions about questioning

In the following sections we address what we think are some
of the most interesting unresolved psychological questions
about human inquiry. The criticism is built around the
following nine questions about human inquiry:

1. How do people construct a set of hypotheses?
2. How do people generate a set of candidate queries?
3. What makes a “good” answer?
4. How do people generate and weight possible answers to

their queries?
5. How does learning from answers affect query selection?
6. How do cognitive constraints influence inquiry strate-

gies?
7. What triggers inquiry behaviors in the first place?
8. How does inquiry-driven learning influence what we

learn?
9. What is the developmental trajectory of inquiry

abilities?

Each section is designed to operate somewhat indepen-
dently so readers are encouraged to read this article in a
nonlinear fashion. In addition, at the beginning of certain
sections that deal with variables or terms in the standard
OED equations (i.e., Eqs. 1-5), we reprint the relevant equa-
tion and highlight the particular component of the OED
framework that is discussed.

Question 1: How do people construct the space
of hypotheses?

A crucial foundation for being able to use an OED model
is the set of hypotheses or hypothesis space, H , that a

learner considers. One reason is that the most common
measure of information quality (Information Gain, Eq. 4)
depends on changes in the entropy over the space of possible
hypotheses:

The genesis of hypothesis spaces and priors in models of
cognition is an issue that has been raised with respect to
Bayesian models of cognition (Goodman, Frank, Griffiths,
& Tenenbaum, 2015; Griffiths, Chater, Kemp, Perfors, &
Tenenbaum, 2010; Jones & Love, 2011; Marcus & Davis,
2013), but plays out in particularly interesting ways in the
OED framework.

What is a hypothesis or hypothesis space? Hypotheses
often are thought of as reflecting different possibilities
about the true state of the world (related to possible world
semantics, Ginsberg & Smith, 1988). Hypothesis sets may
contain discrete objects (like causal structures, category
partitions, or even dynamic physics models, Battaglia,
Hamrick, & Tenenbaum, 2013). Alternatively, a hypothesis
space might reflect a distribution over continuous quantities
(e.g., locations in space), or model parameters. The
examples in this article often focus on discrete cases, since
they tend to be more commonly used in OED models of
higher-level cognition. However, the issues we raise also
apply to some continuous hypothesis spaces.

How do current psychological applications of OED
models define this hypothesis space? If the domain of
inquiry is sufficiently well-defined, modelers often assume
that learners consider an exhaustive set of hypotheses.
For example, in categorization tasks the full set includes
every possible partition of the space of objects into
categories (Anderson, 1991; Markant & Gureckis, 2014;
Meder & Nelson, 2012; Nelson, 2005). In causal learning
scenarios, the hypotheses might be all possible (direct
and acyclical) graphs (or possible parameterizations of
graphs) that might explain the causal relationships between
a number of variables (Bramley, Lagnado, & Speekenbrink,
2015; Murphy, 2001; Steyvers, Tenenbaum, Wagenmakers,
& Blum, 2003). In a spatial search task, the hypothesis set
could consist of all possible locations and orientations of
an object (Markant & Gureckis, 2012; Najemnik & Geisler,
2005). This exhaustive approach can lead to the following
three problems.

First, fully enumerated hypothesis spaces can be very
large and complex, even in relatively simple tasks with a
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well-defined structure. For example, the number of possible
partitions of objects into categories grows exponentially
with the number of objects (Anderson, 1991; Berge, 1971).
Similarly, the number of possible causal graph hypotheses
increases rapidly with each additional variable (2 variables
yield 3, 3 variables 25, 4 variables 543, and 5 variables
29281 possibilities). In real-world situations, the number of
candidate category members and potential causal variables
often far exceeds the situations used in psychological
experiments, exacerbating the issue.

Given limited cognitive capacities, it seems unlikely
that people can consider hundreds or thousands of discrete
hypotheses and update their relative plausibility with every
new piece of data. In fact, empirical studies often find
that people appear to consider only a limited number
of hypotheses in probabilistic reasoning tasks (Dougherty
& Hunter, 2003a). Hypothesis set size in some tasks
also scales with working memory capacity (Dougherty &
Hunter, 2003b), which suggests that cognitive load could
influence hypothesis set size. Some studies even argue that
people consider only one hypothesis at a time in various
learning and decision-making tasks (Bramley et al., 2015;
Courville & Daw, 2007; Sanborn, Griffiths, & Navarro,
2010; Vul et al., 2014).

Another conceptual problem is that hypothesis sets are
not always easy to define from the perspective of the
modeler. Although it is sometimes obvious what belongs in
a hypothesis set for a particular task, there are many cases in
which it this is much less clear. For example, imagine a child
shaking a new toy for the first time. What should we assume
about her hypotheses, given that she has never seen a toy
like this before? And how should she reduce her uncertainty
about these hypotheses as efficiently as possible? Of course,
it is possible that, based on prior experience with other
toys, she is testing some high-level possibilities, for example
whether or not the toy makes any noise when shaken.
However, it is also possible that she chooses actions in line
with more low-level principles of reducing prediction error
about the outcome of her own motor actions. In that case,
her hypothesis space might consist of a genzerative model
that links actions, world states and percepts, and that can
be used to quantify the expected surprise associated with
self-generated actions (for such a general formulation of
action as active inference, see Friston, 2009). Alternatively,
the best model of this kind of behavior might not involve
any hypotheses. Instead, the child’s behavior might be the
outcome of some internal drive to explore and act on the
world that is independent of particular beliefs or goals
(Hoch et al., in review).

Confronting these conceptual and practical challenges
is critical for models of inquiry. Here we address three
possible approaches that have been used in recent research
and discuss the merits of each. They include restricting

hypothesis spaces, focusing on single hypotheses, and
forming queries with no hypotheses whatsoever.

Curtailed hypothesis spaces

One solution to the combinatorial explosion of hypotheses
is to select only a few hypotheses at a time and try to behave
optimally given this subset. This is viable when it is possible
to enumerate all hypotheses in principle, but the complexity
of the full space is large and cognitive limitations forbid
considering the whole set.

There is some evidence that people consider such pared
down sets of hypotheses when seeking information. For
example, Steyvers and colleagues’ 2003 causal intervention
study, the best-fitting OED model was one that restricted
the hypothesis set to a single working hypothesis (causal
graph), as well as its “subgraphs” and a null model in
which all variables were independent. Oaksford and Chater
(1994) made a similar modeling assumption by considering
only two possibilities about the world, one in which the
conditional if p then q holds, and one in which p and q are
entirely independent. However, there are many other logical
relationships that could exist between them (e.g., the inverse
conditional or a bi-conditional).

If some reduction of a hypothesis space provides a better
account of human inquiry, an interesting question for the
field becomes how to develop theories of this process.
One approach is to model more directly the processes that
might be used to construct a hypothesis set. Currently there
are few such algorithmic theories, with the exception of a
model called HyGene (Dougherty, Thomas, & Lange, 2010;
Thomas, Dougherty, Sprenger, & Harbison, 2008). When
encountering new data, HyGene generates hypotheses that
have served as explanation for similar types of data in
the past. Past data is retrieved from memory based on its
similarity to the current data, and working memory capacity
places an upper bound on the number of retrieved items.
This subset of hypotheses is then evaluated with respect to
the current data, and inconsistent hypotheses are ruled out.
Since hypothesis generation in HyGene is based on memory
retrieval processes, this approach would be particularly
useful for modeling inquiry in domains where learners
have a certain degree of prior knowledge (e.g., clinicians
diagnosing diseases).

Alternatively, hypothesis spaces may be constructed on
the basis of other processes. For example, comparison has
been shown to promote relational abstraction, which in
some cases might help bootstrap new types of hypotheses
(Christie & Genter, 2010). According to this idea,
comparison between two objects invokes a process of
structural alignment where different features and relations
of the objects are brought into correspondence with one
another. In doing so, comparison has been shown to help
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focus people on shared relational structure, making these
commonalities more salient for subsequent processing (e.g.,
similarity judgments). Thus, comparison might also help
alter the hypothesis space considered for inquiry behaviors,
by highlighting relational features.

One approach to formalize curtailed hypothesis genera-
tion comes from rational process models (also often simply
referred to as sampling algorithms, see Bonawitz, Deni-
son, Griffiths, & Gopnik, 2014; Courville & Daw, 2007;
Denison, Bonawitz, Gopnik, & Griffiths, 2013; Gershman,
Vul, & Tenenbaum, 2012; Sanborn et al., 2010; Vul et al.,
2014). These models explain how a computationally limited
organism can approximate Bayesian inference by making
simplifying assumptions about how hypotheses are main-
tained and updated. Instead of representing the complete
posterior probability distribution over possible hypotheses,
the idea is that learners sample from this distribution, and
thus only maintain a subset of hypotheses at any point in
time. One feature of these models is that they can account
for sequential dependencies during learning. For example,
under certain parameterizations particle filter models yield
hypotheses that are “sticky”, that is, that once considered
will be maintained and only dropped when a learner encoun-
ters strong conflicting evidence (related to win-stay-lose-
shift models of belief updating, Bonawitz, Denison, Gopnik,
& Griffiths, 2014). This stickiness property matches human
learning data in some tasks and is therefore considered an
advantage of rational process models over “purely ratio-
nal” models of hypothesis generation and belief updating
(Bonawitz, Denison, Gopnik, & Griffiths, 2014; Bramley
et al., 2015; Brown & Steyvers, 2009).

However, current sampling models lack a robust coupling
of model terms and psychological processes. For example,
it is unclear how the (re-)sampling of new hypotheses from
the current posterior might be implemented. A promising
direction is to integrate ideas from algorithmic models like
HyGene that ground similar computations in mechanistic
accounts of memory retrieval (Gershman & Daw, 2017; Shi,
Griffiths, Feldman, & Sanborn, 2010).

Rational process models face another challenge. Much
of their appeal is based on the fact that, under certain
limiting conditions, they converge toward the true Bayesian
posterior. Consequently, many have argued that they might
bridge between optimal analyses and mechanistic accounts
of behavior (Bonawitz, Denison, Griffiths, & Gopnik, 2014;
Brown & Steyvers, 2009; Jones & Love, 2011; Sanborn
et al., 2010). In reality, however, many of these algorithms
require hundreds or thousands of samples in order to
converge. Cognitive psychologists, on the other hand,
often find that humans use considerably fewer samples,
even as few as one (Vul et al., 2014), possibly because
sampling incurs cognitive or metabolic costs. One skeptical

interpretation of this work is that it implies that Bayesian
inference is too costly for the brain. Also, if people sample
stochastically, it should be rare that any single person acts
optimally during inquiry (Chen, Ross, & Murphy, 2014).
Instead, these theories predict that people will be optimal or
unbiased on average (across people or situations). This pro-
perty of sampling models, if correct, would suggest signi-
ficant changes to the way OED models are evaluated. For
instance, researchers would need to start quantifying opti-
mality at a group level rather than for individuals (e.g., Mozer,
Pashler, & Homaei, 2008) or based on data from repeatedly
testing a participant on the same task. This may require larger
experimental populations and new experiment designs.

Single-hypothesis queries

One common finding is that learners seem to seek infor-
mation for a single hypothesis at a time. Although this can
be seen as just a special (most extreme) case of curtailing
hypothesis sets, single-hypothesis queries have rather
unique characteristics and have motivated countless psy-
chological experiments and models. Since OED models so
fundamentally rely on a process of discrimination between
competing hypotheses (see Fig. 1), single-hypothesis que-
ries have been particularly difficult to explain.

For example, in Wason (1960)’s “2-4-6” task, partici-
pants are asked to find out which numeric rule the exper-
imenter is using, knowing only that the sequence “2-4-6”
satisfies this rule. In this task, many participants immedi-
ately generate the working hypothesis that the rule is “even
numbers increasing by 2” and proceed to test this rule with
more positive examples, like “4-6-8” (Klayman &Ha, 1989;
Wason, 1960). This has been called a positive testing strat-
egy (PTS). Because it can yield suboptimal behaviors, it is
also cited as an example of confirmation bias, that is, the
tendency to verify one’s current beliefs instead of seeking
and considering conflicting evidence (Klayman &Ha, 1987;
1989; Nickerson, 1998).

Single hypothesis use and the failure to consider
alternatives have been observed in many areas of cognition
besides information search. For example, during sequential
learning people often only maintain a single hypothesis,
which gets adapted with new evidence over time (Bramley
et al., 2015; Gregg & Simon, 1967; Markant & Gureckis,
2014; Nosofsky & Palmeri, 1998; Trueswell, Medina,
Hafri, & Gleitman, 2013). When dealing with objects that
have uncertain category membership, people often base
their inference on the most likely category, ignoring its
alternative(s) (Malt, Ross, & Murphy, 1995; Murphy, Chen,
& Ross, 2012; Ross & Murphy, 1996). During causal
reasoning, people frequently make predictions based on
single causes and neglect the possibility of alternatives
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(Fernbach, Darlow, & Sloman, 2010; Fernbach, Darlow, &
Sloman, 2011; Hayes, Hawkins, & Newell, 2015).

The ubiquity of single hypothesis reasoning is not easily
reconciled with the metaphor that people act like intuitive
scientists, even after conceding that they are subject to
cognitive limitations. Since model discrimination lies at the
heart of the metaphor, it seems difficult to argue that single-
hypothesis queries are the output of an optimal learner in
the OED sense. However, it turns out that the PTS maxi-
mizes information under certain assumptions. For example,
the PTS is optimal (in the OED sense) when hypotheses
only have few positive instances, when instances only
occur under a single hypothesis (during rule learning or
categorization, see Navarro & Perfors, 2011; Oaksford &
Chater, 1994; Thomas et al., 2008), or when hypotheses
are deterministic (when predicting sequences; see Auster-
weil & Griffiths, 2011). Although this explanation cannot
explain away all cases of single-hypothesis inquiry, it
does raise the intriguing question of whether these fac-
tors actually influence whether people generate alternative
hypotheses. For example, Hendrickson, Navarro, and
Perfors (2016) manipulated the number of positive instances
of a hypothesis and found that participants behaved in
a less confirmatory fashion as hypothesis size increased.
Similarly, Oaksford, Chater, Grainger, and Larkin (1997)
manipulated people’s beliefs about the frequency of fea-
tures associated with a hypothesis in the Wason card
selection task (for example, participants were told that p
and q both occurred often). People were more likely to try
to falsify the rule when both features were common. These
findings highlight how a learner’s prior beliefs about the
structure of their environment impacts the hypotheses they
generate, and the kinds of evidence they seek to test them
(see also Coenen, Bramley, Ruggeri, & Gureckis, 2017).

Zero-hypotheses queries

The assumption that people make queries to test specific
hypotheses is central to OEDmodels of cognition. Yet many
reasonable questions do not require any hypotheses at all.
For example, upon visiting a city for the first time, you
may ask your local friend “Where’s a good place to eat?”.
This is an incredibly common kind of query that does not
require considering any hypotheses beforehand. Another
example of zero-hypothesis information gathering occurs
in early childhood, when children exhibit unstructured,
exploratory play (e.g., Hoch, Rachwani, & Adolph,
in review). Although uncertainty about many aspects of
their environment is presumably high, it is difficult to
imagine that young children always represent hypotheses
about what might happen as a consequence of their

information seeking behaviors. These examples raise the
question of how it is possible for a learner to quantify their
uncertainty or notice a knowledge gap without hypotheses.
We provide an in-depth discussion of constraints on zero-
hypothesis queries in the next section that addresses how
people generate questions in the first place.

Summary

A critical challenge for OED models is to explain the set of
hypotheses that the learner considers. Although there is
some recent work exploring how people reason with subsets
of hypotheses, core psychological principles guiding this
process have remained elusive and choices are sometimes
made after experimental data have been collected. In
addition, the OED framework does not easily apply to
situations where learners 1.) consider the wrong hypotheses
for the task, 2.) consider only one hypothesis, or 3.) do not
consider hypotheses at all. These are not insurmountable
challenges to the OED research program, especially in light
of recent ideas about adaptive hypothesis sampling or online
hypothesis space construction (Christie & Genter, 2010).
However, these issues are critical to establishing the broader
utility of the OED approach, outside of simple experimental
tasks.

Question 2: How do people generate a set
of candidate queries?

In standard use, an OED modeler computes the utility or
informativeness of each possible query available in the
task and the asks if people select the best option. For
example, this could be which cards to turn over in theWason
selection task (see above) or where to fixate one’s eyes in
a visual search task. However, what comprises the set of
possible queries, {Q} = Q1, Q2, ..., that are available in any
situation?

Consider, for instance, a young child asking a parent, “Can
ducks fly?” Perhaps this is an informative question for the
current situation, but there seems no limit to the number
of questions that could be asked (e.g., “Do ducks sleep?”,
“How many babies do ducks have?”, “Is the weight of a
duck in kilograms less than ten times the square root of
seven?”), even though only a subset might be relevant for
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any particular inferential goal. In order for OED principles
to apply to this fairly typical situation, every possible
question or query would need to be evaluated and compared
to others. OED models currently provide no guidance on
this process, ignoring almost completely how the set of
questions or queries is constructed.

For OED to be applied to more general types of inquiry
(such as asking questions using language), the framework
must be able deal with the wide range of human questions.
As we will argue below, the existing OED literature has
tended to focus on relatively simple inquiry behaviors (e.g.,
turning over cards in a game, asking the category label
of an object), which are more amenable to mathematical
analysis. However, once one considers modeling the rich
and sophisticated set of questions people can ask using
natural language, computational issues become a significant
challenge. Although this section focuses on question
asking in natural language, the concern is not limited
to the language domain. For example, interacting with a
complex system (like the physical world) often requires
us to construct novel actions or interventions (Bramley,
Gerstenberg, & Tenenbaum, 2016) from a potentially
unbounded space. When playing a new video game, for
instance, a person might initially perform a wide range
of complex actions to understand the game dynamics and

physics. Each action sequence reveals information about the
underlying system’s rules but is selected from a potentially
large space of possible action sequences.

Searching for the right question

Many researchers have had the experience of sitting through
the question portion of a talk and hearing a very clever ques-
tion asked by an attendee. Often, we would not think to ask
that question ourselves, but we immediately recognize it as
informative and insightful.While in some cases wemight at-
tribute this to differences in knowledge (e.g., perhaps a col-
league thinks about an analysis in a slightly different way)
it also seems clear that coming up with a question is often a
significant intellectual puzzle (Miyake & Norman, 1979).

Consider a recent study by Rothe et al. (2016). In
Experiment 1 of the paper, participants played a game
where they had to discover the shape and configuration
of a set of hidden ships on a gameboard (similar to the
children’s game Battleship). Rather than playing an entire
game, participants were presented with partially uncovered
gameboards (i.e., some of the tiles were uncovered, see
Fig. 2) and then were given the opportunity to ask questions
in natural language, which would be helpful for learning the
true configuration of this gameboard (the only limitations

Fig. 2 Top: Example of the Battleship game. Hidden gameboards are
created by randomly selecting ships of different sizes and orientations
and placing them in a grid at random, non-overlapping locations. A
context is defined as a partially unveiled gameboard (center). The goal
of the learner is to identify the true gameboard by asking questions.

Bottom: Task sequence from Rothe, Lake, & Gureckis (2016). Sub-
jects first turned over individual tiles one by one following instructions
of experimenter (clicking on the ?). Next they indicate the possible
ship locations. Finally, people asked whatever question they wanted in
natural language in order to best discover the underlying gameboard
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were that questions had to be answerable with a single
word and that multiple questions could not be combined).
Example questions are “Where is the upper right corner
of the blue object?”, “How long is the yellow object?”, or
“How many tiles are not occupied by ships?”. Interestingly,
while participants generated a wide variety of different
questions, they rarely came up with questions that came
even close to the highest expected information gain (EIG).
This is somewhat surprising, because one assumption of
the OED framework is that people will ask the most
informative question in a given context. Given the simple
setup of the task, this should be the same question for
each participant in this game. Yet few subjects asked really
clever and revealing questions. The modal participant asked
much more mundane and only moderately informative
questions.

Interestingly, although participants were not good at
devising useful questions, they were highly skilled at
recognizing good questions. In a follow-up experiment,
participants were presented with the same set of ambiguous
game situations and a list of potential questions derived
from the questions asked in the previous study. Here
people’s selections closely mirrored the predictions of OED
models with people preferring the objectively most infor-
mative questions.

The Rothe et al. (2016) study highlights how the demands
of generating questions “from scratch” may limit optimal
information-seeking behavior. In general, this work helps
to clarify the distinction between question generation and
question evaluation (the latter being the primary empha-
sis of contemporary OED approaches). One future research
topic raised by this work is how people formulate ques-
tions in a given context and how they search the large
space of possible questions. While presently underexplored,
these topics have natural solutions in computational or algo-
rithmic approaches. For example, Rothe et al. (in prep)
develop a question generating model that creates the seman-
tic equivalents to human questions using a context-free
grammar. This approach defines the basic semantic prim-
itives of questions and rules for the composition of these
primitives, then uses OED models as an objective function
of a search process that explores the space of expressions
within the grammar to find the optimal question.

An alternative approach would be to construct ques-
tions “bottom-up” from the current situation. For example,
questions could be constructed around hypothetical propo-
sitions or facts that might hold in a given situation (e.g.,
the size of the red ship could be six) but that are currently
unknown. In any event, increased emphasis on question-
generation is likely to open up new avenues for empirical
research and process-level models. In some cases, it might
also help expand the range of situations that are address-
able within the OED framework. For example, question

asking behavior has long been of interest to educators
(Graesser et al., 1993), and models that apply to more com-
plex and realistic types of inquiry behaviors might have
greater impact.

Amosaic of question types

The question of how to apply OED principles to more open-
ended natural language question asking exposes more than
just the issue of how this large space can be searched.
Once one allows for broader sets of questions additional
computational complexities are often encountered. Our
intention here is not to provide an exhaustive taxonomy
of different question types (placing questions or queries
into categories may not be particularly meaningful), but to
compare and contrast a few different types of queries to
illustrate the computational issues at stake.

Label queries As noted above, most information search
studies give people the option of choosing from a set of
narrowly defined query types. In categorization experi-
ments, for instance, participants can typically only inquire
about the category membership of unlabeled items (Mac-
Donald & Frank, 2016; Markant &Gureckis, 2014; Markant
et al., 2015). During spatial search the task is usually
to query specific locations and learn what they contain
(Gureckis & Markant, 2009; Markant & Gureckis, 2012;
Najemnik & Geisler, 2005).

In machine learning, these types of queries are called
“label queries” and, similar to psychological experiments,
they constitute a large part of active machine learning res-
earch (Settles, 2010). During a label query, an oracle (knowl-
edgeable human) is asked to produce the label or class of
an unlabeled instance, which helps a classification algo-
rithm learn over time (roughly, “What is the name of this?”).
An appealing feature of label queries is that they intu-
itively match some real-world question asking scenarios.
For example, children often learn by pointing out objects in
the environment and having an adult label them. Vocabulary
learning of a foreign language has a similar property.

The computational evaluation of label queries in an OED
framework is relatively simple, assuming the learner has a
well-defined hypothesis space (see Question 1 for why that
might not be the case). For example, when encountering an
animal that is either a cat or a dog, a child might point at it
and ask “what is that?” Knowing that there are two possible
answers (“cat” or “dog”), it is relatively easy to compute the
sum in Eq. 1 (see Question 4).

Feature queries

Instead of requesting labels or examples, learners can also
ask about the importance of entire features or dimensions
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of categories. For example, a naive learner might ask
whether the ability to sing is an important feature for telling
whether something is a bird. Unlike label queries, this type
of question does not request the class membership of a
single exemplar, but instead asks more generic information
about the class. Such feature queries have proven to be
successful in machine learning, in particular when human
oracles are experts in a domain and can quickly help
improve a classifier’s feature weights to accelerate learning
(Raghavan, Madani, & Jones, 2006).

The distinction between item and feature queries holds
psychological significance as well. For example, a growing
literature in developmental psychology (see Question 9)
explores information-gathering strategies in simple games
such as “Guess Who?” or “20-questions”. When used as
an experiment, the subject tries to identify a hidden object
by asking a series of yes/no questions. There are two
broad strategies commonly used by human participants in
the game: hypothesis-scanning questions target a specific
instance (e.g., “Is it Bill?”), whereas constraint-seeking
questions ask about features that are present or absent
across multiple objects (e.g., “Is the person wearing a
hat?”). A classic finding in this literature is that younger
children (aged 6) tend to ask more hypothesis-scanning
questions, while older children (aged 11) and adults use
more constraint-seeking questions (Mosher & Hornsby,
1966).

From a computational perspective, the informational
value of some feature queries is easy to compute (e.g., the
constraint-seeking feature questions in the “Guess Who?”
game) and researchers have used OEDmodels as a yardstick
for human performance (Kachergis et al., 2016; Nelson
et al., 2014; Ruggeri & Lombrozo, 2015). A more difficult
problem arises when questioners do not yet know what the
relevant features might be. For example, I might ask my
friend who works in the tech industry what features are
relevant for predicting the survival of a new startup. This
question would help me narrow down the set of features
that I might then proceed to ask more targeted questions
about.

This issue is widely recognized in applied Machine
Learning as the problem of “Feature Engineering” (Blum &
Langley, 1997). When building a model in a new domain,
the modeler first needs to figure out which features to
use (or to build from other features or from raw data).
This process often relies on human input from experts with
domain knowledge, and it precedes the actual learning phase
of the model. It is thus difficult to compute the informational
value of this kind of feature query in a way that makes
it comparable to other types of queries, even though it
undoubtedly serves an important purpose when starting
inquiry in a new domain.

Demonstration queries Consider learning a complex skill
like how to play “Chopsticks” on the piano. A skill is
essentially a category under which some actions count as
performing the skill and others do not. Taking a label query
approach, the learner would play a random sequence of
notes and then ask the teacher or oracle “Is that ‘Chop-
sticks‘?”, eventually learning how to perform the piece.
An alternative strategy would be to request an example
of a category (e.g., “What is an example performance
of ‘Chopsticks‘?”). This type of active class selection
or demonstration query provides a positive example of
the category, which can be highly informative, especially
early in learning (Lomasky et al., 2007). For example, one
might want to ask to see a good or typical example of a
category member (“What does a typical bird look like?”)
before making queries about new exemplars or specific
features. Similarly during causal structure discovery, one
can often learn a lot about a system by seeing a demonstra-
tion of how it works before making a targeted intervention.
The idea of demonstration queries has been considered
for teaching motor skills to social robots, who can ask a
human to demonstrate a full movement trajectory rather
than providing feedback about the robot’s own attempts
at a task (Cakmak & Thomaz, 2012). In humans, demon-
stration queries are particularly useful for learning new
skills. Importantly, the usefulness of demonstration queries
depends on the level of knowledge or expertise of the
answerer, which means that they should be chosen more or
less often based on the learner’s beliefs about the answerer.
This is a topic we discuss in more detail in Question 6.

Demonstration queries are computationally complex. As
noted above, OED models average across all potential
answers to a question, but a question like “What does
a cat look like?” could be answered by providing any
reasonable example of the category (a cat photo, pointing
at a cat, a drawing of a cat). For complex hypotheses or
categories it does not seem possible for the naive question
asker to simulate this set of potential answers via explicit
pre-posterior analysis. It is thus hard to imagine how the
OED framework could provide a satisfactory explanation
of how people assess the usefulness of demonstration
queries (“What does a cat look like?”), compared to, for
example, label queries (“Is this a cat?”). Explaining how
people choose demonstration queries, and when people
deem a demonstration query to be more helpful than other
queries, will likely require an understanding of people’s
metareasoning about query-type selection.

The role of prior knowledge in question generation

So far, this section has highlighted the problem of modeling
question types, and generating questions to serve particular
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goals of a learner. However, there exists a more fundamental
puzzle about the way certain questions are generated.
Consider the following examples.

• What’s the English translation of the German term
“Treppenwitz”?

• Where do raccoons sleep?
• What makes that object float in mid-air?
• Why is that person wearing only purple?
• What do you do for a living?

What these examples have in common is not that they
expect particular types of answers (they could ask for
features, events, labels, mechanisms, etc.), but that can be
asked in the absence of any concrete hypotheses and may
be triggered by context and prior knowledge alone. For a
non-German speaker coming across the term “Treppenwitz”
it not necessary to actually consider particular English
translations. Simply knowing that most words or phrases
can be translated between German and English is sufficient
to know that there is information to be gained. Instead
of concrete hypotheses, such questions can be generated
if the questioner realizes that there exists some currently
unknown fact that is knowable in principle. Since the
number of unknown facts is infinite, there must be some
way of constraining the questions to those that address
specific “knowledge gaps” that can realistically be closed.
To frame this puzzle in another way, consider how an
artificial agent would have to be programmed to generate
these questions in an appropriate situation. Perhaps asking
for a translation of an unknown phrase would be the easiest
to implement if the agent’s goal is to parse and translate
sentences. But we are currently still very far away from
developing artificial intelligence that spontaneously asks
about raccoons’ sleeping places or questions people’s odd
clothing choices in the same way a human might do on a
walk through the forest or a stroll through the city.

We propose that the structure and content of current
knowledge alone can act as a strong constraint on
query generation in the absence of hypotheses. Abstract
knowledge in the form of categories, schemata, or scripts,
can play an important role in highlighting knowledge gaps
(e.g., Bartlett & Burt, 1933; Mandler, 2014; Minsky, 1974).
Knowing that raccoons are mammals, and that a broadly
shared feature of members of the mammal category is the
need to sleep, can help us identify a gap in our knowledge
about raccoons. (In fact, this seems to be a common
question. When the authors typed “where do raccoons”
into a well-known search engine, “sleep?” was among
the top suggested completions of the query.) Conversely,
most people would be much less likely to spontaneously
generate the question “where do raccoons get their nails
done?”, because we have no prior knowledge to suggest

that there even exists an answer to this question. Asking
about the motivation behind a person’s odd clothing choices
similarly requires prior knowledge. At the very least, one
has to know that people generally act based on goals and
intentions, and that an all-purple wardrobe is an unusual
choice. Conventions or conversational scripts are another
source of queries. For example, we learn that it is typical to
ask for someone’s name, place of residence, or profession
upon first meeting them. It is much less common to ask
about a person’s preferred sleeping position, which might
be similarly unknown, but is not part of the conventions
that apply to small talk. Conventional sets of questions
exist in many domains, which makes the task of generating
questions much easier.

What types of knowledge constrain these types of
queries? While some of them, for example social conven-
tions, undoubtedly have to be learned, others may be more
fundamental. Foundational knowledge, sometimes referred
to as core knowledge (Carey & Spelke, 1996; Spelke & Kin-
zler, 2007), may constrain query generation already in early
childhood, when specific world knowledge is still sparse.
For example, we know that infants are endowed with a
system of object representation involving spatio-temporal
principles (such as cohesion, continuity, and support, Spelke
& Kinzler, 2007). Furthermore, children as young as 2
years old make relatively sophisticated assumptions about
causal relationships between objects (Gopnik et al., 2004).
Such early knowledge can be leveraged to help find oppor-
tunities for inquiry. For example, it has been shown that
children engage in more information seeking behaviors
when their prior expectations about causal relationships or
spatio-temporal principles are violated than when they are
confirmed (Legare, 2012; Stahl & Feigenson, 2015). Upon
seeing an object suspended in mid-air, children might there-
fore proceed to seek further information to explain the now
apparent knowledge gap about how the object is supported
(Stahl & Feigenson, 2015). Another kind of core knowl-
edge that emerges early in life is the ability to represent
animate beings as intentional agents (Spelke & Kinzler,
2007). Young children expect people, but not objects, to
execute actions based on goals and plans (Meltzoff, 1995;
Woodward, 1998). This means that, similar to adults, young
children observing a person behave in an intentional but
strange manner might become aware of a knowledge gap
and try to find out what goals or intentions could explain
this behavior.

Summary

Current models of inquiry assume that questions are
generated to satisfy a particular set of inferential goals, by
testing specific hypotheses about the world. However, the
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examples above illustrate the wide variety of questions that
arise from knowledge gaps identified and are formulated
in other ways. Given how common such questions are,
future work on inquiry should devote more attention to
query generation that goes beyond the hypothesis-testing
framework. Knowledge-based queries also raise an entirely
new set of computational challenges. Accounting for these
questions will often require models of domain knowledge,
structured representations, and fundamental beliefs about
causality and intentionality. Most interesting is that these
types of queries seem to fall outside the domain of
OED models, as formulated to date, in that no alternative
hypotheses need be considered, and the set of answers may
not be explicitly enumerated.

Question 3: What makes a “good” answer?

In the OED framework, a question’s expected value is a
weighted average of the value of each of its possible answers
(1). In this sense, the value of answers is a more basic
concept than the expected value of a question. However,
what makes an answer to a query “good”? More formally:

The importance of this issue is reflected in a variety of scien-
tific literatures. For example, psychologists and philosophers
have discussed what counts as a good “explanation” of a
phenomenon. Although there are differences in people’s pre-
ference for certain explanation types (e.g., the teleological
or ontological distinction, Kelemen & Rosset, 2009; Lom-
brozo & Carey, 2006), this work does not usually involve
computationally precise ways of evaluating the quality of
answers (or explanations). Despite its foundational nature,
in the OED framework there is very little research on how
people evaluate an answer’s usefulness (but see, Rusconi,
Marelli, D?Addario, Russo, & Cherubini, 2014).

To develop an initial intuition for answer quality, con-
sider the following example dialogs. If a learner asks some-
one “Where exactly do you live?”, an answer including
exact Global Positioning System (GPS) coordinates com-
pletely answers the question and removes any lingering
doubt. In contrast, a more imprecise answer like “New York
City” might leave uncertainty absent any other information.
The point is that our intuition is that some answers (like the
GPS) are better than others because they are more infor-
mative. The quality of an answer also depends on what

the question asker already knows. Consider the following
exchange:

Q: What city were you born in?
A: New York City
Q: Do you live in the same city you were born?
A: Yes
Q: Which city do you live in?
A: New York City

Here, the final question-answer pair is identical to the one
above but now the answer contains no new information.

These examples highlight a few key points about
answers. A good answer is relevant to the given query
and adds information above and beyond what is already
known by the learner. Answers differ in quality based on
the amount of information they provide, but it is possible
for two answers to be equally good if they offer the same
query-specific information (that is, it does not matter if
one answer provides additional information that was not
called for by the query). A major topic of research within
the OED framework is determining a general-purpose,
mathematically rigorous way of defining the quality of an
answer to a question. The most common approach is to
assume there is a type of utility associated with answers. In
the remainder of this section, we will give a more detailed
account of specific utility measures that OED models have
used to quantify the quality of answers.

Determining the utility of answers

In the broadest sense, it is useful to distinguish between
informational (or disinterested) and situation-specific (or
interested) utility functions (Chater et al., 1998; Markant &
Gureckis, 2012; Meder & Nelson, 2012). Pure information
utility functions are based solely on probabilities and
on how answers change probabilities. Situation-specific
functions take into account that learners collect information
for a specific purpose beyond pure knowledge gain
(e.g., saving time, money, or cognitive resources1). Both
approaches reflect hypotheses about the overall goals and
purpose of human inquiry, although the difference between
them is not always clearly acknowledged in psychological
literature.

Informational utility functions

Most OED models evaluate answers according to how they
change a learner’s beliefs about possible hypotheses. These
metrics are a thus a function of the learner’s prior belief
before receiving an answer, P(H), and their posterior belief

1Note that we use the term situation-specific to include both external
and internal costs
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having received that answer to a their question P(H |Q =
a), which in our shorthand notation can be written as
P(H |a). (Recall that a denotes a particular individual
answer to a particular question Q.) Information Gain, from
Eqs. 1 and 2, is one of the most popular functions used
within psychology, but there exist a number of interesting
alternatives, including impact (expected absolute belief
change), diagnosticity, KL divergence, and probability gain
(Nelson, 2005).

The differences between these measures may sometimes
seem subtle, but comparing them more carefully raises
interesting and fundamental questions. Consider the six
scenarios depicted in Table 2. Each scenario shows how
the distribution of a learner’s belief about some parameter
θ changes as a result of an answer to their query. The

Table 2 Distributions showing a hypothetical learner’s subjective
belief about a parameter, θ , before and after learning a new piece of
information

Situation IG KL PG

1

Prior

Posterior

+ + +

2

Posterior

Prior

+ + +

3

Posterior
Prior

o o o

4

PriorPosterior

o + o

5

Prior

Posterior

- + -

6

Prior

Posterior

+ + o

The columns show the predictions of Information Gain (IG), Kullback-
Leibler divergence (KL), and probability gain (PG). A (+) indicates
a positive utility, (o) indicates zero utility and (-) indicates a negative
utility. The different approaches frequently disagree

three rightmost columns show how three different utility
measures evaluate the usefulness of this change in belief.
(To keep things simple, we just focus on the sign of the
model outputs. For in-depth comparison, see J. D. Nelson,
2005). The models are Information Gain (IG), Probability
Gain (PG), and Kullback-Leibler divergence (KL). An
answer’s probability gain is the reduction in probability of
incorrect guess that the answer provides. Interestingly, it
can be obtained by replacing Shannon Entropy, ent (H), in
Eqs. 1 and 2 with pFalse(H), also known as Bayes’s error:

pFalse(H) = 1 − max
h∈H

P (h). (6)

Kullback-Leibler (KL) divergence is an alternative
information-theoretic measure to Shannon entropy, which
is useful in comparing two distributions (in this case,
a posterior and prior). When evaluating the expected
usefulness of a question, that is, EU(Q), KL divergence
and Expected Information Gain (EIG) give exactly the same
value, for every possible question, in every possible scenario
(Oaksford & Chater, 1996). However, KL divergence and
IG can make contradictory predictions when the usefulness
of different specific answers, i.e., U(a), is evaluated, as
the examples in Table 2 demonstrate. The KL-divergence
resulting from an answer a given question Q is

UKL(a) =
∑

h∈H

P (h|a) log
P (h|a)

P (h)
. (7)

For the first two situations in Table 2, the three models
agree that the answers’ values are positive. In both cases,
the variance of the posterior has narrowed, implying that
the learner is now more confident in the estimate of θ .
Likewise in the third example, all models assign zero value
to an answer that has not changed a learner’s beliefs at all.
This scenario captures any situation in which a learner is
told something they already know or that is irrelevant for
answering their question.

Examples four to six show more divergent cases. In
scenario four, a learner changes their belief about the value
of θ but does not narrow their posterior. For example,
imagine learning that your friend’s car is in fact a Toyota,
not a Chevrolet as you previously assumed. This would
change your estimate of the car’s costs without necessarily
affecting your uncertainty around the precise value. The IG
in this example is zero, since uncertainty does not change.
The same holds for the probability of making a correct guess
(PG), since the probability of the most likely hypothesis
has stayed the same. This assessment runs counter to some
intuitive definitions of what constitutes a good answer,
since the learner has in fact changed their belief quite
substantially. A measure like KL-divergence, which assigns
positive value to this scenario, thus may be more in line with
these intuitions.
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Scenario 5 is even more puzzling. Here, the learner
receives an answer that increases their uncertainty. This
leads to negative IG and PG, although KL divergence is
positive. (In fact, KL divergence is always positive unless
prior and posterior are exactly the same.) Returning to the
car example, this could happen upon learning that a friend’s
car is either a Toyota or a Ford, having previously assumed
that it was probably a Chevrolet. Now, you might end up
being more uncertain about its cost than before. Again,
this conclusion is somewhat at odds with the intuition that
something was learned in this scenario even if the learner
ended up more uncertain as a consequence.

Finally, scenario 6 shows that sometimes IG and PG
make diverging predictions. Here, the learner has narrowed
their posterior around the smaller peak, and has therefore
reduced their overall uncertainty. However, the probability
of the most likely hypothesis has stayed the same; thus, the
answer has no value in terms of PG. As an example, imagine
that you are trying to guess the breed of your friend’s dog
and you are pretty sure it is a German shepherd. Finding
out that it is not a Chihuahua because your friend is allergic
to Chihuahuas might slightly change your hypothesis space
about much less likely possibilities (and therefore lead
to positive IG), but not at affect your high confidence
regarding your top hypothesis (hence zero PG).

These examples demonstrate that assigning values to
answers, even from a completely disinterested perspective
(i.e. when one is only concerned with quantifying belief
change), is not at all trivial. These examples raise some
interesting psychological questions, such as how people
treat answers with negative IG, or how they balance
information and the probability of making a correct choice.
An important area for future research will be to consider
information gain based on other types of entropy metrics,
and not only based on Shannon entropy. For instance,
Crupi and Tentori (2014) discuss information gain based
on quadratic (rather than Shannon) entropy. In fact, in
mathematics, physics, and other domains, there are many
different entropy models, several of which could be
important in a descriptive theory of human behavior (Crupi
et al., 2018). We will briefly return to these questions below,
after discussing situation-specific utility functions.

Situation-Specific utility functions

According to situation-specific (“interested”) theories of
information search, the utility of an answer (and therefore a
query) depends on concrete goals of the learner, irrespective
of or in addition to the goal of increasing information.
Question-asking strategies that are based on situation-
specific goals can yield strongly different predictions
than disinterested models (Meder & Nelson, 2012). For
example, consider a categorization task in which payoffs are

asymmetric, such that correctly or incorrectly classifying
items into different categories yields different costs or
penalties. This could be the case during medical diagnosis,
where there might be greater costs associated with
misclassifying a potentially fatal condition than a benign
one, which leads to asymmetrical decision thresholds for
treatment (lower for the fatal condition). This asymmetry
should also affect the medical tests that are administered.
Tests that have the potential to change the treatment decision
are more valuable than those that do not, irrespective of their
pure informational value (Pauker & Kassirer, 1980). Cost-
sensitive components also matter when learners have some
pure information goals (e.g., to minimize Shannon entropy
across possible hypotheses) but wish to simultaneously
minimize time spent, cognitive demands, or number of
queries made.

Interestingly, people are not always sensitive to costs of
incorrect decisions (Baron & Hershey, 1988) and tend to
make queries in line with pure information strategies, like
probability gain or information gain on some tasks (Markant
et al., 2015; Meder & Nelson, 2012). An interesting
question for future work is to understand when and why
this might be the case. A preference for disinterested search
may be adaptive, for instance, if people expect to re-use
information later on in a different task. This could be
investigated by manipulating people’s beliefs about future
re-usability to see how the use of disinterested versus
interested question asking strategies changes. It is also
possible that it is computationally intractable in some cases
to assess situation-specific utilities. For example, Gureckis
and Markant (2009) explored how even for a simple task
this can require not only computing the utility of each
individual answer, but also how information from that
answer might influence a future decision-making policy.
Computing this can be a significant computational burden.
Finally, sometimes people only realize what the value of
an answer is when they actually see it and process it. This
would suggest that people might have to learn to adjust
their inquiry strategy as they learn more about a given
situation-specific utility function. This possibility calls for
experiments that have people assess the value of both
questions and of answers, in tandem, to test how the latter
influences the former (also Question 5, on learning from
answers).

Summary

Determining the value of an answer is no easy feat. Even
when learners have a good probabilistic model of the task
at hand, there are many different approaches to measure
the utility of answers, many of which have some degree
of plausibility. The lack of consensus on the ’right’ kind
of answer utility poses an interesting challenge for OED
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models, all of which define a question’s expected usefulness
as the probability-weighed average of its possible answers’
individual usefulness values. To address this challenge, we
see several possible strategies.

First, there are a number of efforts to try to isolate
domain-general principles of assigning values to answers.
Using carefully designed experiments, this approach might
ultimately reveal that some functions are simply a better
match for human intuitions about answer utilities than
others. One example is work by Nelson et al. (2010) that
found that expected probability gain was the best-fitting
psychological model among several candidates, including
EIG, for information search behavior in a probabilistic
classification task. Future studies will be required to explore
more systematically if this finding holds in other domains
as well.

Second, if no domain-general information metric can
be found, then modeling inquiry in a new domain or task
will require an understanding of how people assign value
to received answers in that domain. Since this is such a
fundamental building block of any OED model, it might
be sensible to study the value of answers in isolation,
before trying to build models of the expected usefulness of
questions.

Question 4: How do people generate and weight
possible answers to their queries?

OED models define the expected usefulness of a question
as a probability-weighted average of the usefulness of each
possible answer (1):

We have just discussed the problem of evaluating the util-
ity of individual answers. An entirely different question is
which answers people anticipate to begin with andwhat proba-
bilities are assigned to them. For example, if you ask someone
“Which city do you live in?”, an OED model requires you
to consider each possible answer (“New York”, “Boston”,
“Austin”, “Denver”, etc...) and to weight the utility of that
answer by the probability of receiving it. If you know noth-
ing else about an individual, the probabilities might be the
base rates from the general population. However, if you
meet a new colleague whom you know is a professor, cities

with universities or colleges might be more probable. Impor-
tantly, the above equation assumes that the learner knows
the possible answers a question might receive, and the prob-
ability of each of those answers. In real-world tasks, as well
as in more complex experimental tasks, such as models of
eye movements in visual search or of causal learning, mod-
els based on the OED framework must make a number of
usually implicit assumptions about these variables.

What is a possible answer?

The OED framework treats question asking as following
from the goal of obtaining information about something. As
a psychological model, OED presumes that people know
the possible answers and their probabilities. Returning to
an earlier example, if someone asks “Where do raccoons
sleep?” it seems nonsensical that the answer would be
“blue,” improbable that the answer is “underwater,” and
likely that the answer is “in a den”.

Surprisingly little research in psychology has attempted
to understand what people expect as answers to different
types of questions. Given the tight coupling between
answers and questions implied by the OED framework,
this could be a fertile research topic. For example, how do
differences in how readily people consider different answers
affect information seeking-behaviors? Some questions have
rather obvious or simple answer spaces (e.g., a true/false
question returns either of two answers). In addition, in some
cases the possible answers to a question are basically the
same as the hypothesis space. For example, for the question
“What city do you live in?”, the possible hypotheses
are cities, as are the answers. This suggests that issues
about hypothesis generation discussed in Question 1 might
hold relevance. The space of answers that people consider
possible might strongly influence the value they assign to
a question. Furthermore, the type of learning that happens
after receiving an unexpected versus expected answer
might be somewhat different (see Question 5). Despite
the theoretical importance of these issues to the OED
hypothesis, little research has addressed them.

Dealing with intractable answer spaces

As noted throughout this article, theories of inquiry based
on OED principles share much in common with theories
of decision making. This is particularly clear given that
the value of a question depends on a “tree” of possible
future outcomes similar to how in sequential choice theories
the value of an action depends on a “tree” of later
actions (see Fig. 3). However, as many authors in the
decision-making literature have noted, it is computationally
intractable to consider all possible future outcomes or
scenarios (e.g., Huys et al., 2012; Sutton & Barto, 1988).
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Current choice

Next choice

Two choices ahead

Question

Possible answers

Fig. 3 Top: A typical decision tree. The value of the current choice is
often assumed to depend on the outcomes and available choices at later
points in the tree. Bottom: Structure of OED models showing how the
value of a question similarly depends future states (i.e., answers to the
question)

A variety of methods have been proposed to approximate
this vast search space of outcomes, two of which we briefly
summarize here.

Integration by Monte-Carlo sampling The key to Monte-
Carlo approximation (e.g., Guez, Silver, & Dayan, 2012) is
the fact that the quality of a question is basically a weighted
sum or integral (i.e., Eq. 1). One way to approximate this
integral is to sum over a set of samples:

EU(q) =
∑

a∈A

P (a)U(a) ≈ 1

m

m∑

�=1

U(a(�)) (8)

where a(1), ..., a(m) are a set of m samples from the P(a)

distribution. In the limit as m → ∞, the approximation
based on samples converges to the true value of EU found
by weighting the value of each answer by its appropriate
probability. Under the Monte Carlo approach, people might
repeatedly mentally simulate different answers they could
receive and evaluate the utility of each. Highly probable
answers would be generated often whereas less probable
answers might rarely be simulated. In the case where
the number of answers is large, or where some answers
are very unlikely this approximate sum may be more
computationally efficient. In addition, when m is small
certain biases might be introduced (e.g., rare answers are
less likely to be sampled and thus less likely to enter into the
evaluation of a question).

Integration by tree pruning An alternative approach
assumes explicit “tree pruning” where certain future paths
of the decision tree are selectively ignored. For example,
Huys et al. (2012) consider tree pruning in a sequential
decision-making task. The basic idea is that rather than
considering all possible paths of a decision tree unfolding
from a particular choice (e.g., Fig. 3, top), an agent might
selectively drop certain paths. In the Huys et al. setting
this including pruning sequential paths that likely lead to
particular types of outcomes (e.g., punishment). An anal-
ogous strategy in the OED setting might mean removing
from consideration answers for which P(a) falls below
some threshold. While such ideas have yet to be tested in
the inquiry literature, certain heuristic strategies should bias
choices in specific ways. For example, it may be possible to
experimentally detect a tendency to discard low probability
answers with high information utility.

Integration by generalizedmeans A final approach consid-
ers alternative ways of computing P(a), and the possibility
of averaging some function of answer utility values, rather
than the raw answer utility values themselves. The General
Theory of Means (Muliere & Parmigiani, 1993) provides a
general mathematical framework. One extension of Eq. 1
is to use answer weights that are nonnegative and sum
to 1, but which do not necessarily correspond to answer
probabilities:

EU(q) =
∑

a∈A

w(a)U(a) (9)

Defining expected utility in terms of answer weights,
rather than answer probabilities, highlights that in the
normative theoretical sense, there is a decision to make
about what kind of weights to use (e.g., maximum entropy
consistent with known constraints, or a minimax strategy,
etc).

The basic constraint in the General Theory of Means
framework is that the weights should be nonnegative and
should sum to 1. For example, if the probability of some
answers is well-understood, but the probability of other
answers is not known, people might assign higher weight
to answers with less-well-understood probabilities, other
things being equal. The important points, theoretically, are:
(1) from a normative standpoint, we seldom really know the
answer probabilities and (2) from a descriptive standpoint,
although answer weighting is central to OED models, we
still lack a good understanding how people actually evaluate
answer utilities.

Summary

The OED framework defines the value of a question as the
probability-weighed average of the value of its individual
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answers. We have reason to suspect that this is not the full
story, given that the probability of individual answers is
not always knowable, that it is combinatorially difficult or
impossible to integrate all possible answers in some circum-
stances, and that various heuristic strategies might be sim-
pler. Proposals from the decision-making literature suggest
some computationally feasible strategies to handle the com-
binatorics of evaluating all possible answers’ usefulness.
Assessing how people weight individual answers is ripe for
future research, as alternate proposals can be well-specified,
and there has been virtually no research in this area to
date.

Question 5: How does learning from answers affect
query selection?

Like a scientist who considers what they could learn from
possible outcomes of their experiments, an optimal question
asker anticipates how an answer would change their current
beliefs. For example, computing the expected new Shannon
entropy in the EIG model entirely relies on the degree of
belief change:

This aspect of question evaluation is a key idea behind the
concept of preposterior analysis (Raiffa & Schlaifer, 1961)
and lies at the heart of the OED approach.

Leaving aside the computational challenges of simulating
all possible answers (see previous section), how people up-
date their beliefs based on new data is one of the most funda-
mental (and contentious) questions in many areas of higher-
level cognition, including language acquisition, categoriza-
tion, stochastic learning, and judgments under uncertainty
(e.g., Tenenbaum, Griffiths, & Kemp, 2006). Findings from
this longstanding line ofwork can inform the study of inquiry
in a number of ways, two of which will be discussed below.
First, we will discuss how deviations from OED norms dur-
ing inquiry can emerge from particular violations of infer-
ence norms. Second, we will show that inductive inference
strategies are often heavily influenced by the current con-
text and the identity and intentions of the person providing
the information. Since a vast number of inquiry scenarios

are embedded in some form of social or educational context,
understanding this pragmatic aspect of inference is pivotal
for a complete account of question-asking.

Inductive norm violations

There are many ways in which people deviate from
(Bayesian) inductive principles when integrating new
evidence with prior knowledge. Consider the following
well-known examples.

• It has been shown that in some situations people exhibit
what is often called base-rate neglect (Doherty, Mynatt,
Tweney, & Schiavo, 1979; Kahneman & Tversky,
1973). Base rate neglect is the tendency to evaluate the
posterior probability of a hypothesis, P(h|e), mostly based
on its ability to account for the new evidence, P(e|h),
while largely ignoring its prior probability, P(h).

• When evidence is presented sequentially, people often
reveal the opposite phenomenon. That is, they assign
too much weight on their initial beliefs and behave
conservatively when updating these beliefs in light of
new evidence (Edwards, 1968; Phillips & Edwards,
1966).

• In other tasks, it has been shown that people exhibit a
positivity bias. That is, they assign more weight to posi-
tive evidence (e.g., learning that something is true) com-
pared to negative evidence (learning that something is
false), even when both types of evidence are equally diag-
nostic (Hodgins & Zuckerman, 1993; Klayman, 1995).

There is ongoing debate on whether these phenomena
count as biases and whether they can be explained based
on people’s task-specific beliefs or preferences (Griffiths
& Tenenbaum, 2006; Kahneman, Slovic, & Tversky, 1982;
Krynski & Tenenbaum, 2007). What’s important for the
present discussion is that they can have significant impact
on the expected information value of possible questions.
For example, base-rate neglect could lead people to ask
questions about hypotheses that can be tested easily, even if
the hypothesis in question is unlikely a priori. Among other
things, this could lead to an unwarranted preference for
medical tests with a high hit-rate, even if they produce many
false positives (some authors would argue that frequent
mammograms are an example for the tendency to seek
such tests; see Elmore et al., 1998; Gigerenzer, Mata, &
Frank, 2009). Conservatism during question asking could
lead to a type of “question-asking myopia” whereby askers
make a greater effort to test their initial hypotheses, instead
of considering alternatives that appeared less likely in the
beginning but are supported by incoming data. This could
explain the finding that people who are asked to state
their hypotheses early during a mock police investigation
were subsequently more biased in their information-seeking
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strategies than those who were not asked to do so (O’Brien
& Ellsworth, 2006). (The former group not only showed
higher confidence in their initial hypothesis, but also sought
more evidence for it, irrespective of the alternatives.)
Overweighting positive evidence could lead to a preference
for questions that people expect to yield “yes” answers. This
possibility in particular could provide another explanation
for people’s use of a positive testing strategy (discussed
above, see also, Klayman & Ha, 1989; Wason, 1960).

These examples show that deviations from optimal
induction principles and violations of inquiry norms can
be intimately intertwined. However, even though the
relationship between them has been pointed out before
(Klayman & Ha, 1989; Nickerson, 1998), it is rare for
psychologists to consider the two in tandem (but see Coenen
& Gureckis, 2015).

Pragmatic and pedagogical reasoning

Human inquiry does not take place in a vacuum, nor are
people’s questions typically directed at an anonymous ora-
cle with unknown properties. Instead, many question-asking
scenarios involve a social context that is shared between the
questioner and the answerer. Furthermore, questioners usu-
ally have at least some expectations about the knowledge,
beliefs, and intentions of answerers. This means that evalu-
ating the usefulness of potential answers crucially depends
on pragmatic and (in a teaching context) pedagogical con-
siderations.

Shared context Imagine that at the end of a meal
your friend asks “Are you going to finish that?” Your
interpretation and potential answer will be completely
different if your friend is currently the host of a dinner party
(they want to clear the table) or simply sharing a meal with
you at a restaurant (they want to eat your food). It’s of course
not a new insight that interpretations of language depend
on our understanding of the shared context between speaker
and listener (Grice, 1975; Lewis, 1969). However, recent
advances in probabilistic pragmatics have made it possible
to formalize them as part of a Bayesian inference framework
(Frank & Goodman, 2012; Goodman & Stuhlmüller, 2013;
Goodman & Frank, 2016), which can be integrated with
other probabilistic models, including OED models. To
illustrate the main idea behind a probabilistic model of
pragmatic interpretation, consider the example in Fig. 4
from Goodman and Frank’s (2016) Rational Speech Act
(RSA) model. Here, a speaker is referring to one of three
friends and the listener has to infer which one. The listener
does so by recursively simulating the speaker’s beliefs about
their own beliefs, starting from a simplistic, “literal” (Lit)
version of the listener who updates their beliefs about the
world based on Bayes’ rule and a flat prior over referents.

Fig. 4 The RSA (rational speech act) framework models pragmatic
reasoning as a recursive process. Figure adapted from Goodman and
Frank (2016)

Based on this literal listener, the simulated speaker infers
that the most informative way of pointing out the hat-
wearing friend would have been to refer to the hat directly.
Thus, the mention of glasses must refer to the hat-less friend
with glasses. (Goodman & Frank, 2016)

A good demonstration of how this probabilistic prag-
matic framework can be combined with OED comes from
a study by Hawkins, Stuhlmüller, Degen, and Goodman
(2015). They used the RSA model together with EIG to
model people’s behavior in a guessing game. In this task,
participants were assigned the roles of questioners and
answerers. Questioners had the task of finding out the loca-
tion of hidden objects (e.g., “find the poodle”) by directing
questions at the answerers, who could see all of the objects
(e.g., a poodle, a Dalmatian, a cat, etc.). Questioners were
placed under a set of restrictions on the types of ques-
tions they could ask (e.g., must not ask about poodles, but
may ask about Dalmatians or dogs) and answerers were
equally aware of those restrictions. The study showed that
questioners could come up with clever indirect questions
(e.g., “where’s the dog?”) that were correctly interpreted
by the answerers who then gave helpful answers (revealing
the location of the poodle, not the Dalmatian). The authors
found that both questioners and answerers were better cap-
tured by the combination of an RSA model and EIG than by
a “pure” EIGmodel that just used the literal meaning of both
questions and answers. This finding demonstrates that when
learners try to anticipate the likelihood of different answers,
they also take into account the context or state of the world
that is shared with their counterpart.
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Features of the teacher Another important factor that
affects what we learn from our questions is the intention
and expertise of the person providing the answer. For
example, we would expect to receive different answers from
a knowledgeable and helpful teacher (Tenenbaum, 1999)
than from someone who is uninformed or ill-intentioned.
This difference between learning in pedagogical and
non-pedagogical situations has recently been explored
computationally and experimentally (Shafto, Goodman, &
Griffiths, 2014; Shafto, Goodman, & Frank, 2012), showing
that learners and teachers can make sophisticated inferences
about each others’ minds in order to improve learners’
success. A good demonstration is learning from examples.
In a teaching context, learners can usually expect examples
to carry more information than just labels, since they expect
teachers to choose particular examples that will help the
learner generalize (Gweon, Tenenbaum, & Schulz, 2010;
Tenenbaum&Griffiths, 2001; Xu& Tenenbaum, 2007). For
example, teachers might provide prototypical examples of
a category to allow the learner to pick up on the relevant
features needed for future classification.

An important question for future research is how askers
and answerers simulate the mental states of their counterpart
and how many levels of recursive inference (“I think that
they think that I think that they think, etc. ...”) are involved
in this process. Recent work in probabilistic pragmatics
has demonstrated individual variability in terms of levels
of recursion (Franke & Degen, 2016). Given the evidence
that even young children make pedagogical assumptions
about teaching adults (Bonawitz et al., 2011; Kushnir,
Wellman, & Gelman, 2008), another question concerns the
developmental trajectory of these abilities and how world
knowledge (what do people generally assume about one
another in question asking scenarios?) and social reasoning
(what are the intentions of this particular individual?)
contribute and interact to shape the extremely sophisticated
inferences that adults make about each other during inquiry.

Summary

Many OED models assume that learners anticipate how the
answers to their queries will change their current beliefs.
Here, we pointed out two important factors that may
constrain this process and consequently affect how queries
are chosen. First, given what we know about the plethora of
inductive inference biases that people exhibit in other tasks,
there is little reason to believe that anticipating future belief-
change during inquiry should follow normative principles
(Bayes’s Rule) in every respect. Thus, when there is reason
to believe that people are anticipating future belief change
(like OED models suggest), one has to take into account
how biases in this process would affect potential biases
during query selection. Second, when answers are provided

by other people, as it is often the case during inquiry,
learners’ inferences will be constrained by pragmatic and
pedagogical considerations. Thus, to build realistic inquiry
models, we need a better understanding of the psychological
underpinnings of inferences in social contexts.

Question 6: How do cognitive constraints influence
inquiry strategies?

Previous sections of this paper have pointed out that
the OED framework, if interpreted in a mechanistic
way, makes very ambitious computational demands that
would indubitably exceed learners’ memory and processing
limitations. In earlier sections we discussed the idea that
learners may sometimes restrict their hypothesis space,
sample from their posterior beliefs, or approximate the
aggregation of answer utilities into a question utility. These
ideas fall largely within the OED framework in the sense
that they represent cognitively plausible but statistically
principled approximations. However, another possibility is
that people use an entirely different set of strategies that are
not curtailed versions of OED models to balance the trade-
off between computation, accuracy and ease of processing
(Simon, 1976).

One inquiry strategy that has received a lot of attention
in educational psychology is the principle of controlling
variables (CV). A CV strategy says that learners design
experiments by changing one experimental variable at a
time and holding everything else constant. Besides the
benefit of yielding unconfounded evidence, this strategy
is considered desirable because it is relatively easy to
use and teach (Case, 1974; Chen & Klahr, 1999), even
though children do not often generate it spontaneously
(Kuhn et al., 1995; Kuhn, Black, Keselman, & Kaplan,
2000). By focusing on only one variable at a time, it
reduces the number of items to be held in working memory
and also creates easily interpretable evidence (Klahr, Fay,
& Dunbar, 1993; Tschirgi, 1980). Although CV is often
treated as a normative strategy (Inhelder & Piaget, 1958),
its effectiveness in an OED sense actually depends on very
specific features of the system of variables at hand. For
example, when there are many variables but very few of
them have any effect on the outcome, it can be much more
efficient to manipulate multiple variables at once, assuming
that testing for the occurrence of the outcome is costly.
However, adults often still test variables in isolation, even
when testing multiple variables is more efficient (Coenen,
Bramley, Ruggeri, & Gureckis, 2017). Empirically, these
results may reflect the prominence of controlling variables
in educational settings, or because people experience the
CV strategy to effectively balance effectiveness and ease of
use. The key point for the present purposes is that the CV
strategy is not entirely equivalent to OED.

Psychon Bull Rev (2019) 26:1548–15871570



There are other ways in which people might trade off
informativeness and computational tractability. Klayman
and Ha (1987), Klayman and Ha (1989) found that partic-
ipants often engage in a strategy they called limit testing.
According to this approach, people restrict their hypothesis
set to one focal hypothesis and seek confirmatory evidence
for it. However, within that focal hypothesis people still test
regions of higher uncertainty. For example, if a learner’s
focal hypothesis in a rule testing task was that “countries
in South America” satisfy the rule, they might test this
hypothesis by asking about South American countries at
geographical extremes (e.g., Venezuela and Uruguay), to
make sure that the true hypothesis is not in fact smaller
than the current one (e.g., “countries in South America that
are South of the Equator”). This strategy allows learners
to refine their beliefs while still engaging in positive test-
ing, which violates OED norms in many circumstances (see
Introduction). Like a controlling variables strategy, limit
testing thus does not count as an “optimal” strategy with-
out significant additional assumptions (Nelson et al., 2001).
However, it might be a very reasonable approach given
constraints of a learner’s ability to represent the full set
of hypotheses.

Other examples include the idea that people can simply
mentally compare two alternative hypotheses, look for
places where they diverge, and then ask queries specifically
about such diverging points. This process does not require
enumerating all possible queries or answers, but it may be
a reasonable heuristic in many cases. For example, when
deciding between two hypotheses about the structure of a
causal system, it is possible to choose which variables to
manipulate by comparing the two structures and finding
points where they differ (e.g., links that go in opposite
directions). In fact, such a “link comparison” heuristic can
sometimes closely mimic predictions from an EIG model
(Coenen, Rehder, & Gureckis, 2015).

Finally, some inquiry behaviors might be selected via a
reinforcement learning strategy where questions or actions
that lead to positive outcomes are repeated (Sutton & Barto,
1988). For example, you might ask a speaker in a psycholo-
gy talk “Did you consider individual differences in your
study?” because in the past this has been a useful question to
ask no matter the speaker or content. While this might lead
to highly stereotyped and context-inappropriate questions,
it is in fact possible to train sophisticated reinforcement
learning agents to adapt question asking to particular cir-
cumstances based on intrinsic and extrinsic reward signals
(Bachman, Sordoni, & Trischler, 2017). Importantly, the
reinforcement learning approach arrives at the value of an
action in an entirely different way than an OED model.
Instead of prospectively evaluating possible answers and
their impact on current beliefs, it relies on a history of
past reinforcement. Depending on the specific assumptions,

this approach may be discriminable from OED models,
particularly during early learning of inquiry strategies.

Adaptive strategy selection

These alternative information-gathering strategies deserve
consideration alongside OED not only as alternative
theoretical frameworks (as for instance the reinforcement
learning approach might represent) but also because they
might represent cognitive strategies that trade off against
more OED-consistent approaches in different situations.
Following on this latter idea, what determines whether
people follow an optimal OED norm or a heuristic that
is easier to use, like controlling variables or limit testing?
While determinants of strategy selection have been studied
extensively in other domains, like decision making (Lieder
et al., 2014; Marewski & Schooler, 2011; Otto, Raio,
Chiang, Phelps, & Daw, 2013; Rieskamp & Otto, 2006),
relatively little work addresses this question in the inquiry
literature. One exception is a recent study by Coenen,
Rehder, and Gureckis (2015), who investigated the use
of an OED norm (EIG) and a simpler heuristic (positive
testing strategy) in a causal inquiry task. Across multiple
experiments, participants were asked to intervene on three-
variable causal systems to determine which of two possible
causal structures governed the behavior of each system
(similar to Fig. 5, top). Figure 5 (bottom) shows posterior
inferences over the hyperparameter μ from a hierarchical
Bayesian model of people’s intervention choices. This
parameter measures the degree to which participants, on
average, relied on an EIG strategy (μ = 1), compared
to a positive testing heuristic (μ = 0), which cannot
be explained as an approximation of EIG (see paper for
full argument). The different distributions are posterior
distributions of this parameter for different between-subject
experiments that varied a number of task parameters. In
the “Baseline” experiment, participants’ behavior was best
described by a mixture of the two strategies. In subsequent
experiments, however, behavior spanned a wide spectrum
of strategy profiles. In the experiment corresponding to the
rightmost distribution, labeled “EIG superior”, participants
received an additional set of problems before completing the
baseline task. These problems were specifically designed
to penalize non-OED strategies (i.e. positive testing would
yield completely uninformative outcomes most of the
time, costing participants money). Having worked on these
problems, participants were more likely to use EIG in the
baseline part of the experiment, which indicates that, in
principle, most people are able to implement the normative
solutions if they learn that their performance would suffer
severely otherwise. In contrast, in three experiments that
added time pressure to the baseline task (see three leftmost
distributions), participants’ behavior was much more in
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Fig. 5 Top: Examples of two possible causal graphs relating three
nodes (variables). The nodes can take on one of two values (on or off).
In the experiment, participants had to intervene on a similar system
by setting the value of the nodes in order to determine which of two
possible causal graphs actually described the operation of a unknown
system. Bottom: Inferred posterior probability over hyperparameter μ

in different experiments reported in Coenen, Rehder, and Gureckis
(2015). μ captures the average strategy weight of participants in a
causal intervention task. Whenμ = 1, behavior is completely captured
by the OED norm Expected Information Gain (EIG), when μ = 0,
it is best fit with a heuristic positive testing strategy (PTS). Values
in-between correspond to mixed strategies

line with the positive testing heuristic. This indicates that
the availability of cognitive resources can determine how
people trade off the use of more complex OED norms and
simpler inquiry heuristics.

In a related example, Gureckis and Markant (2009)
explored how people searched for information in a simple
spatial game based on Battleship (see Fig. 2). They
identified two distinct search “modes” as the task unfolded.
At the beginning of the task when the hypothesis space
was relatively unconstrained, people’s choices were less
in accordance with specific OED predications and instead
appeared more random and exploratory. These decisions
were also made relatively quickly. However, at later points
in the game, people seemed to behave more in line
with OED predictions and their reaction times slowed
significantly. This particularly happened in parts of the
task where a small number of highly similar hypotheses
became viable (i.e., situations where OED might be more
computationally tractable). This suggests that even within
the context of a single learning problem, people might
shift between strategies that are more exploratory (i.e., less

directed by specific hypothesis) and more focused on the
disambiguation of specific alternative hypotheses.

Summary

There are many factors that have yet to be explored with
respect to their impact on strategy selection during inquiry,
including task difficulty, working memory capacity, fatigue,
and stress. Research into these topics will allow the field to
move beyond simple demonstrations of the OED principle
and help explain and predict inquiry behavior in different
environments and given particular circumstances of the
learner. This topic is of practical importance because inquiry
plays a crucial role in a number of high-stakes situations
that happen under both external (e.g., time) and internal
(e.g., stress) constraints, like emergency medical diagnosis
or criminal investigations. Finally, this line of research also
dovetails with a growing interest in cognitive science for
models that take into account the cost of computation, and
could contribute to the empirical basis for the development
of these models (Hamrick, Smith, Griffiths, & Vul, 2015;
Lieder et al., 2014; Vul et al., 2014).

Question 7: What triggers inquiry behaviors
in the first place?

OED models describe how people query their environment
to achieve some particular learning goal. The importance
of such goals is made clear by the fact that in experiments
designed to evaluate OED principles, participants are
usually instructed on the goal of a task and are often
incentivized by some monetary reward tied to achieving
that goal. Similarly, in developmental studies, children are
often explicitly asked to answer certain questions, solve
a particular problem, or choose between a set of actions
(e.g., play with toy A or toy B, see Bonawitz et al., 2010).
However, many real-world information-seeking behaviors
are generated in the absence of any explicit instruction,
learning goal, or monetary incentive. What then inspires
people to inquire about the world in the first place?

This is an extremely broad question and there are many
possible answers. According to one approach, the well-
specified goals that are typically used in OED experi-
ments are representative of a more general information-
maximizing “over-goal” that always accompanies people
while navigating the world (e.g., Friston et al., 2015). This
view is particularly well represented by research on chil-
dren’s exploratory play, where the claim is often made that
this behavior represents sophisticated forms of self-guided
inquiry that arise spontaneously during unsupervised explo-
ration (Schulz, 2012b). For example, Cook et al. (2011),
whose study is described in more detail above, argue that
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OED computations form an integral part of preschoolers’
self-guided behavior even in the absence of concrete goals:

“...many factors affect the optimal actions: prior
knowledge and recent experience enter through the
term P(H), while knowledge about possible actions
and likely affordances enters through the term
P(D—A, H). ... Our results suggest that children are
sensitive to all of these factors and integrate them to
guide exploratory play” (p. 348).

Under this view, the constraints of popular experimental
paradigms simply help control for and standardize the
behavior across participants, while still capturing the key
aspects of self-motivated inquiry.

One objection to this view is that at any given moment
there are many possible inquiry tasks a learner might decide
to pursue. While reading this paper you might be tempted
to take a break and read about the latest world news, track
down the source of a strange sound you hear from the
kitchen, or start learning a new instrument. All of these
actions might reduce your uncertainty about the world in
various ways, but it seems difficult to imagine how OED
principles would help explain which task you choose to
focus on.

An alternative view acknowledges these limitations of
the OED framework and instead argues that OED applies
specifically to inquiry devoted to some particular task
“frame” (i.e., a setting in which certain hypotheses and
actions become relevant). For example, a task frame might
be a person in a foreign country trying to determine if
the local custom involves tipping for service. The set of
hypotheses relevant to this task deal specifically with the
circumstances where people might be expected to tip (never,
only for bar service, only for exceptional service, etc.),
and do not include completely irrelevant hypotheses (e.g.,
how far away the moon is in kilometers). In psychology
experiments, such tasks are made clear by the instructions,
but in everyday settings a learner must chose a task before
they engage in OED-like reasoning or learning strategies.
This latter view seems somewhat more likely because absent
a task frame the hypothesis generation issue (see Question
1) becomes even more insidious (imagine simultaneously
enumerating hypotheses about events in the news, possible
sources of noise in the kitchen, and strategies for improving
your piano play). However, this leaves open the question
of how people define these tasks or goals in the first place.
Here we consider two elements to this selection: subgoal
identification and intrinsic curiosity.

Subgoal construction

When learning it often makes sense to divide problems
into individual components that can be tackled on their

own. For example, if a learner’s broader goal is to find
out which ships are hidden in which location during a
game of Battleship (see Fig. 2), they might break down the
problem into first approximating all the ships’ locations,
and then determining their shapes. For example, Markant
et al. (2015) describe an empirical task that led people to
decompose a three-way categorization task into a series of
two-way classification problems while learning via self-
guided inquiry. This happened despite the fact that the
overall goal was to learn all three categories.

Many learning problems have a hierarchical structure
of over-goals and subgoals. Whereas OED norms make
predictions about how to address each individual subgoal,
they do not naturally capture the process of dividing a
problem space into different subsets of goals.

Understanding how people identify subgoals while
approaching a complex learning problem is difficult
(although there exists efforts in the reinforcement learning
literature to formalize this process, see e.g., Botvinick, Niv,
& Barto, 2009). A full account of subgoal development
would probably require knowing a person’s representation
of the features of a problem and their preferences for the
order of specific types of information.

However, there also exist cases in which goal partitions
emerge not from an informational analysis of every
individual problem, but via a learning process across
many problems that yields a kind of “template” for
asking questions in some domain. A college admissions
interviewer might learn, for example, that in order to
estimate the quality of a prospective student, it is a useful
subgoal to find out what types of books they’ve read in high
school. This may not be the most efficient subgoal to learn
about each individual student (it is probably more useful for
potential English majors than Physics applicants), but may
lead to good enough outcomes on average. In many domains
such templates do not even need to be learned, because they
have been developed by others and can be taught easily.
Consider for example the “Five Ws” (Who? What? When?
Where? Why?) that serve as a template for question-asking
subgoals in many different areas of inquiry and for many
different types of over-goals (solving a crime, following a
storyline, understanding the causal structure of an event,
etc.). It would be interesting to study how such conventional
templates influence people’s preferences for establishing
hierarchies of goals, and how learned and conventional
partitions trade-off or compete with the expected value of
information, in particular tasks.

The subgoal/over-goal framework might provide a useful
way for thinking about how OED principles might be
selected in the first place. A learner might have a generic
over-goal to “be an informed citizen” and this then leads
to a variety of smaller inquiry tasks that help learn about
the impact of proposed changes to tax policy or in the
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political maneuvering of various parties. Behaviors within
these subgoals may look more like OED inquiry where
alternative hypotheses are considered; by contrast, the over-
goal is more nebulous and is not associated with enumerable
hypotheses.

In sum, at least one piece of the puzzle for what
triggers inquiry behavior is to consider how people select
task frames. The subgoal idea may be an additional
fruitful direction, because it makes clear how self-defined
objectives might be constructed during learning.

Curiosity and intrinsic motivation

Of course, aside from specific goals, we might decide to
spend more time learning about a topic or task frame simply
because we are curious. While disinterested OED models
(i.e., those with a value function that does not include inter-
nal or external costs) are agnostic about why learners seek
out information, there is a longstanding parallel research tra-
dition in psychology that studies the cognitive and neural
bases of curiosity and intrinsic motivation. For example, it
is well-known that children spontaneously explore objects
with some level of complexity or uncertainty without
any instruction to do so (Cook et al., 2011; Kidd, Pianta-
dosi, & Aslin, 2012; Schulz & Bonawitz, 2007; Stahl &
Feigenson, 2015). Meanwhile, adults care about the answers
to otherwise useless trivia questions (Kang et al., 2009).
Experiments have also shown that humans and other pri-
mates are even willing to sacrifice primary rewards (like
water, money, and time) in exchange for information with-
out obvious use (Blanchard, Hayden, & Bromberg-Martin,
2015; Kang et al., 2009; Marvin & Shohamy, 2016).

To exhaustively review this literature is beyond the scope
of this paper, and would be largely redundant in light of
recent review articles on the subject (Gottlieb, 2012; Got-
tlieb, Oudeyer, Lopes, & Baranes, 2013; Kidd & Hayden,
2015; Loewenstein, 1994; Oudeyer, Gottlieb, & Lopes,
2016). However, there are some particularly intriguing find-
ings and theoretical developments in the curiosity literature
that we think deserve attention by psychologists studying
inquiry with OED models. In particular, they point out
factors and mechanisms that add value to certain sources
of information over others. These sources of value could
potentially be integrated with OED models to yield more
accurate predictions about how people choose subjects
of inquiry.

To explain curiosity, researchers have traditionally
suggested that it is a primary drive (perhaps as a
consequence of some evolutionary process that favors
information seekers), or an expression of some innate
tendency for sense-making (Berlyne, 1966; Chater &
Loewenstein, 2015; Loewenstein, 1994). Similarly, recent
work has proposed that people seek information because

it generates a type of intrinsic reward, similar to “classic”
extrinsic rewards, like food or money (Blanchard, Hayden,
& Bromberg-Martin, 2015; Marvin & Shohamy, 2016). In
support of this claim, some studies have found activation in
primates’ neural reward circuitry during information search
that is similar to activation during other types of value-
based choice (specifically, the primate data was collected
in dopaminergic midbrain neurons Bromberg-Martin &
Hikosaka, 2011; Redgrave & Gurney, 2006). Furthermore,
a set of recent fMRI studies with humans has found
correlations between people’s self-reported curiosity about
trivia-questions and activation in areas of the brain involved
in processing other rewards (Gruber, Gelman, & Ranganath,
2014; Kang et al., 2009).

What types of information can trigger such intrinsic
reward signals? A key component of many theories of
curiosity-driven learning is an inverse U-shaped relationship
between a learner’s current knowledge and their expressed
curiosity about some fact, domain, or stimulus (Kang et al.,
2009; Kidd, Piantadosi, & Aslin, 2014; Kidd & Hayden,
2015; Loewenstein, 1994). This means that curiosity is
often highest for domains or tasks in which people’s
knowledge is at an intermediate level. This finding tallies
with learning and memory research showing that items with
intermediate difficulty are often learned most efficiently
(Atkinson, 1972; Metcalfe & Kornell, 2003). Thus, asking
questions about facts or relationships that are “just slightly
beyond the individual’s current grasp” (Metcalfe & Kornell,
2003) might be an adaptive strategy that helps direct
people’s attention to worthwhile opportunities for learning
(Vygotsky, 1962). This suggests that intrinsic reward from
information can stem from a learner’s expected learning
progress, an idea which is already used to build algorithms
in self-motivated robots (Oudeyer, Kaplan, & Hafner,
2007).

Another source of informational value is the anticipation
of extrinsic rewards in the future that might come from
obtaining information in the present. This was demonstrated
empirically by Rich and Gureckis (2014), Rich and
Gureckis (2017), who showed that people’s willingness to
explore risky prospects increased with their expectation
to encounter them again in the future. This instrumental
motivation to explore may actually underlie many kinds
of seemingly intrinsically motivated information-seeking
behaviors, or at least play some part in shaping people’s
motivation to seek information. For example, one might be
intrinsically curious about the answer to a trivia question,
but this effect could be enhanced if the question also
pertains to one’s future goals (a trivia question about the
capital cities in South America would have more appeal for
someone who has to take a geography test next week).

While work on curiosity does not specifically focus on
how people choose particular task frames and subgoals, it
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does identify factors that affect what kind of information
people seek and offer some hints about why they do so in
the first place. Future work is needed to disentangle when
people seek information for instrumental (future extrinsic
reward) or epistemic (knowledge progress) purposes, and
what types of information have evolved to yield particularly
strong intrinsic rewards.

Summary

Identifying the source of people’s thirst for information
lies outside the realm of the OED framework. However,
it also lies at the very core of what makes inquiry such
a fundamental and fascinating human activity, and thus
deserves further study. To arrive at a unified set of com-
putational principles that underlie curiosity, motivation, and
informational value will likely require overlapping efforts
by cognitive psychologists, neuroscientists and develop-
mental researchers (Kidd & Hayden, 2015). Furthermore,
recent advances in reinforcement learning models of intrin-
sic motivation (Oudeyer et al., 2007; Oudeyer et al., 2016;
Singh, Barto, & Chentanez, 2004)may serve as an important
inspiration for computationally informed theories.

Question 8: How does inquiry-driven learning
influence what we learn?

The OED framework emphasizes effective or even optimal
information gathering which, in turn, implies more effective
learning. One of the major reasons that inquiry behavior
is a topic of study is because it has implications for
how best to structure learning experiences in classrooms
and other learning environments. For example, in the
machine learning literature, active information selection
can be proven to reduce the number of training examples
needed to reach a particular level of performance (Settles,
2010). However, a key question is if active inquiry reliably
conveys the same advantages for human learners. In
the following section we review existing work on this
topic, first considering the relevant benefits of active over
passive learning, and next considering the effect of the
decision to stop gathering information on learning. Our
core question here concerns when active learning improves
learning outcomes and how knowledge acquired during
active learning can deviate from underlying patterns in the
environment.

Active versus passive learning

A number of studies have attempted to compare active and
passive learning in simple, well controlled environments
(Castro et al., 2008; Markant & Gureckis, 2014; Sim,
Tanner, Alpert, & Xu, 2015). For example, Markant and

Gureckis (2014) had participants learn to classify simple
shapes into two categories. The experiment contrasted
standard, passive learning against a self-directed learning
condition. In the passive learning condition, an exemplar
was presented on the screen and after the delay the category
label of the item was provided. Across trials participants
attempted to learn how to best classify new exemplars.
In the active learning condition, participants could design
the exemplars themselves on each trial, and received the
category label of the designed item. The critical difference
between these conditions is if the learner themselves
controls which exemplar is presented (active learning) or if
it is selected by the experimenter or some external process
(passive learning). The study found that active learning led
to faster acquisition of the category than passive learning.
Furthermore, a third condition, in which yoked participants
viewed the designed examples of the active group in a
passive setting, showed significantly worse performance
than the other groups. The results showed that allowing
participants to control the selection process during learning
improved outcomes (a process the authors referred to as
the hypothesis-dependent sampling bias). This bias is the
tendency of active learners to select information to evaluate
the hypothesis they currently have in mind, which often does
not transfer to other learners (such as the yoked condition)
who have alternative hypotheses in mind (Markant &
Gureckis, 2014). One study has since tested this idea with
children (Sim, Tanner, Alpert, & Xu, 2015), while another
has explored the boundaries of the effect (MacDonald &
Frank, 2016; Markant, 2016).

A potential downside of selecting data based on one’s
current hypotheses and goals is highlighted by an idea
that Fiedler (2008) calls the “ultimate sampling dilemma”
According to this idea, there are two main ways people
obtain information from the world around them. The
first is natural sampling, a learning process in which
the ambient statistical patterns of the environment are
experienced through mostly passive observation. Natural
sampling is related to unsupervised learning (Gureckis &
Love, 2003; Pothos & Chater, 2005) but focuses more
on the data generating process (i.e., how examples are
encountered) rather than the lack of supervision and
corrective feedback. For example, by walking around a
new city one might get a sense of the typical size of a
car in the region. Artificial sampling refers to situations
where learners intervene on the world to influence what they
learn about (e.g., asking about the size of one particular
brand of car), thereby interrupting the natural way that
data is generated. The ultimate sampling dilemma points
out that these two forms of learning can sometimes trade
off with each other because they expose different aspects
of the environment. As Fiedler (2008) points out, natural
sampling is less likely to bias learners, because they are
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exposed to the true patterns in the world without altering
them through their own behavior. This allows them to
learn about natural variation in the world and enables
them to gather information about typicality or frequency,
for example. On the other hand, artificial sampling, for
instance based on an OED model, can have the benefit
of being much more efficient for answering a particular
question or for seeking out exemplars that occur rarely but
are highly informative. In those cases, learning only via
natural sampling can require waiting a long time for these
particularly informative or infrequent patterns to occur. Of
course in some domains, such as causal reasoning, artificial
sampling or active intervention is actually necessary for
uncovering certain relationships in the environment (Pearl,
2009; Schulz, Kushnir, & Gopnik, 2007). As a result, some
combination of natural and artificial sampling may be best
for promoting more robust learning (MacDonald & Frank,
2016). The best way to do this is still up for debate, however,
and there remain key questions about how other elements,
such as the learners’ conception of a problem, influence
learning.

By highlighting the benefits and potential pitfalls of arti-
ficial and natural sampling, the ultimate sampling dilemma
quite naturally suggests how the tension between the two
might be resolved. Since natural sampling helps build an
accurate representation of the statistical properties of the
world, it might be particularly beneficial for sampling
environments that are novel and about which a learner
lacks knowledge regarding the most important features or
variables. Thus, natural sampling through passive observa-
tion forms a natural first step during inquiry in a novel
domain, before being followed by more targeted hypothesis-
driven inquiry. Of course, an important empirical question
is if people are able to determine the best point at which
to switch from one mode of questioning to the other
(Tversky & Edwards, 1966).

Stopping rules

Besides choosing what to learn, people often face the
question when to stop searching for information. This
question is particularly relevant when reaching absolute
certainty is unlikely or impossible and learners have to
decide when their current level of information is “enough”.
OED models (see Question 3) make predictions about when
stopping becomes more desirable than making additional
queries, but the problem can be formalized more broadly
for scenarios in which the content of samples is trivial
(i.e., problems that do not require an OED model to select
particular queries). A common approach is to use principles
of optimal control theory and dynamic programming (some
of the work presented in this section takes this approach, see
also Edwards, 1965; Ferguson, 1989, 2012). In psychology,

the stopping question has been approached in different
ways. While some researchers have studied whether people
collect too much or too little information given the cost
structure of a task, others have looked at the impact of
stopping decisions on subsequent beliefs and behaviors.
Here, we will investigate the second question, as it reveals
some subtle ways in which control during learning can
affect our beliefs.

How stopping decisions shape our experience

A separate line of research investigated what effect
(optimal) stopping strategies have on people’s experiences
and beliefs about the world.

Stopping decisions can be the source of distorted views
of people’s environment. For example, stopping rules can
lead to asymmetric knowledge about different options if
these options have valence of some sort (i.e. they can be
rewarding or not). A good example is the so-called hot
stove effect (Denrell & March, 2001). Loosely speaking,
it is the tendency to underestimate the quality of novel
or risky prospects that happen to yield low rewards early
on and are subsequently avoided. Having a single bad
experience at a new restaurant might deter customers from
re-visiting and potentially correcting that bad impression
in the future. Since some bad experiences happen to be
exceptions, some restaurants end up being undervalued as
a consequence. On the other hand, a coincidental positive
experience will not lead to a corresponding overvaluation
because decision makers will likely revisit these restaurants
to reap more benefits and eventually find out their “true”
value via regression to the mean. If it turns out the
initial good experience was an exception, customers will
eventually realize this and correct their good impression.
Similar effects have been observed in other tasks that
involve choice-contingent information, like approach-avoid
decisions (Rich & Gureckis, 2014), or situations in which
access to feedback is asymmetric across prospects (Le Mens
& Denrell, 2011).

This work demonstrates the potentially large impact
that the seemingly innocuous decision of stopping search
can have on how we perceive the world. By choosing to
learn more about options that we think are rewarding and
ignoring those that we suspect to be bad, we can end up
with widely asymmetric beliefs. Such asymmetries can be
the source of misconceptions with potentially problematic
effects. On a social level, for example, they can produce
and solidify stereotypes about people or whole social
groups, or increase social conformity (Denrell & Le Mens,
2007). They can also lead to unnecessary risk-aversion and
resistance to change (because good but variable prospects
are more likely to yield low initial rewards), which can be
harmful for both individuals and organizations in the long

Psychon Bull Rev (2019) 26:1548–15871576



run. Future work should further investigate the impact of
stopping decisions on people’s beliefs and judgments as
well as determining methods of mitigating stopping-induced
biases.

Summary

The results reviewed in this section highlight that optimal
inquiry is not just a function of selecting the right queries
to answer one’s questions in an OED sense. It also involves
knowing the right time to switch between active and passive
learning, realizing the right moment to terminate search, and
being aware of the conditions under which our self-selected
data was generated. While existing results primarily stem
from the judgment and decision-making literature, these
issues hold relevance for educators because they help to
lay out expectations about when active inquiry will succeed
or fail as a pedagogical strategy. Similarly, the problem
of deciding when to stop searching for information is
crucial for many inquiry tasks, like dividing up study time
for different material that will appear on a quiz, asking
questions in emergency situations when time is of the
essence, or deciding when one has collected enough data
to finally start writing a manuscript. Making the wrong
stopping decisions in any of these scenarios can have
unintended negative consequences and undo any benefits
that carefully executed OED methods have accrued.

Question 9: What is the developmental trajectory
of inquiry abilities?

The OED hypothesis has been particularly influential in
work on children’s exploration and learning (Gopnik, 2012).
To provide an extensive review of the large literature on
children’s inquiry behavior is beyond the scope of this
paper (see Gopnik & Wellman, 2012; Schulz, 2012b, for
excellent summaries). However, it is important to consider
a few of the developmental issues involved in inquiry skills,
particularly when these touch on core concepts related to
OED.

The child as optimal scientist

A growing number of studies suggest that even young chil-
dren are surprisingly sophisticated at detecting opportunities
to obtain useful information. For instance, Stahl and Feigen-
son (2015) showed infants objects, some of which moved
in ways that violate physical laws (e.g., solid objects that
appear to move through solid walls). Subsequently, infants
were found to explore these objects preferentially, even
going so far as to perform actions like banging them on the
floor to test their solidity (see also Bonawitz, van Schijndel,
Friel, & Schulz, 2012). Similarly, preschool aged children

have been shown to devote more exploratory play to a toy
after being shown confounded evidence for how it works
(Schulz & Bonawitz, 2007; Cook et al., 2011; van Schijn-
del, Visser, van Bers, & Raijmakers, 2015). Children also
seem to integrate subtle social cues to help guide their explo-
ration, such as exploring more when an adult teacher pro-
vides uninformative instruction (Gweon, Palton, Konopka,
& Schulz, 2014). Still further, some evidence suggests
that children can effectively test simple causal hypotheses
through interventions that maximize information (Kushnir
& Gopnik, 2005; McCormack, Bramley, Frosch, Patrick, &
Lagnado, 2016; Schulz, Gopnik, & Glymour, 2007).

Based on such findings, researchers have argued that
children act in ways analogous to scientific experimentation
(Schulz, 2012b). Gopnik (2009) writes “When they play,
children actively experiment on the world and they use the
results of these experiments to change what they think.”
(p. 244). In some areas of cognitive development these
abilities are viewed as directly supporting the idea of the
“child as an optimal scientist”. The core of this idea, and
what brings it into alignment with OED, is that children’s
prior knowledge, beliefs, and goals help to structure their
information gathering behaviors.

While it is important and intriguing that young children
show so many early signs of successful information
gathering, not all of these behaviors need be thought
of as following exclusively from OED principles. For
example, a child might selectively play with a toy after
being shown confounded evidence about how it works
without considering alternative hypotheses about the causal
structure (Schulz, 2012a). Likewise, if exploration always
follows violations in expectations, eventually learning will
cease because most of the time (e.g., outside the lab)
the world works in reliable and predictable ways (Schulz,
2015). As a result, it is important to keep in mind
alternative views on children’s exploration. For example,
Hoch, Rachwani, and Adolph (in review) describe how
infants have seemingly haphazard exploration tendencies.
Using head-mounted eyetrackers, these studies show that
infants rarely move directly toward focal locations (toys
placed in different areas of a room) while walking or
crawling that they had previously fixated while stationary,
as might be expected with goal directed exploration. In
addition, they move around empty rooms just as much as
ones filled with interesting and novel toys (Hoch et al.,
2018). The opposing perspective offered by this work is that
infants are not identifying possibilities for new information
and strategically orienting toward them but instead engage
in “high-variance” motor plans that discover information
almost by serendipity.

The difference between these viewpoints reflects one of
the key issues in evaluating the OED framework that we
have raised throughout this article. It is possible that there
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is some set of goals and beliefs that makes the apparently
haphazard behavior of infants in Hoch et al. (in review)
make sense as an optimal information seeking strategy.
However, it is also useful not to lose sight of questions
about what might change and develop across childhood.
As we have reviewed through this article, actually imple-
menting OED-style computations is a complex cognitive
ability requiring the coordination of hypotheses, actions,
evidence, and learning. It is clear that precisely adhering
to the OED framework (especially in messier, real-world
environments) requires more than what young children have
so far been shown to do. For example, after kids identify
opportunities for knowledge gain, they also have to figure
out the best way to get that knowledge, and (as reviewed
below) that has proven difficult, especially in complicated
situations.

In the following sections we review three key develop-
mental issues related to OED. First, we consider how the
issue raised in Question 1 (hypothesis generation) bears on
developmental changes in inquiry behavior. Next we review
evidence about inquiry in more formal classroom situations.
Finally, we discuss children’s question asking, an important
type of inquiry behavior available after acquiring language.
Throughout we attempt to focus our review on how existing
evidence bears on the core computations assumed by OED
models and how components of this model might change
over the course of development.

Explaining children’s variability via hypothesis sampling

One attempt to reconcile the view that children are optimal
scientists but also seemingly random in their exploration
is to acknowledge that children do not apply OED princi-
ples consistently or as well as adults, and instead exhibit
more variable behavior (Cook, Goodman, & Schulz, 2011;
Schulz, 2012b). Children might simply enter the world with
a broader hypothesis space, weaker priors, and/or fewer
cognitive resources, which translates to seemingly noisy or
more exploratory behavior (Bonawitz et al., 2014; Bonawitz
et al., 2014; Denison, Bonawitz, Gopnik, & Griffiths, 2013;
Gopnik & Wellman, 2012). Computationally, this might be
consistent with approximate Bayesian inference by sam-
pling hypotheses from the posterior, similar to the rational
process models described under Question 1. In fact, Gopnik
and colleagues have recently argued that the development
of both internal (hypothesis sampling) and external (i.e.,
exploratory play, information generation actions) search
may be akin to simulated annealing (Kirkpatrick, Gelatt,
& Vecchi, 1983) where increasingly random and undi-
rected search strategies in infancy slowly transition to more
stable and structured patterns through to adulthood (Buchs-
baum, Bridgers, Skolnick-Weisberg, & Gopnik, 2012). In
some cases this can even lead younger learners to find

solutions that evade adults by avoiding local minima
(e.g., Gopnik, Griffiths, & Lucas, 2015).

Hypothesis sampling models can capture more or less
variable behavior given different parameters (e.g., the num-
ber of samples taken) and thus provide one computational
mechanism that naturally accommodates developmental
change. Such an account might also accommodate the undi-
rected exploration of Hoch et al. with the idea that the
variability in the behavior is slowly “turned down” over
the course of development2. Overall this approach seems
promising as long as one keeps in mind the caveats raised
about this approach under Question 1 above. For instance,
sampling models so far tend to ignore deep integration with
other cognitive processes (e.g., memory retrieval), and they
also raise the question whether extremely variable behavior
generated by such models can even be properly described
as optimal in a way that captures the spirit of the child-as-
scientist metaphor. In addition, applying such a model to
explain the behavior of very young children can be very dif-
ficult because it is hard to identify what hypothesis space
should be sampled (e.g. in Stahl and Feigenson (2015),
what hypothesis spaces about the physical world do children
consider?).

Nevertheless, this approach remains a fertile area for
exploration. One obvious empirical prediction of this
theory is that the major change in inquiry behavior across
development does not necessarily manifest in absolute
performance but in inter-subject variability. This suggests
a slightly different focus for developmental research which
is often framed in terms of when children achieve adult
performance in a task. If children are optimal but noisy, the
key issue should be characterizing changes in variability.

Inquiry in the science classroom

The concept of inquiry as a cognitive activity has been
hugely influential in science education (Inhelder & Piaget,
1958; Chen & Klahr, 1999; Kuhn, Black, Keselman, &
Kaplan, 2000). A key focus has been to teach general
strategies for learning about causal structure (e.g., how
variables such as water, fertilizer, or sunlight might influ-
ence the growth of a plant in a science lab, see Klahr et
al., 1993). However, compared to the developmental litera-
ture reviewed above, the conclusion of much of this research
is that children often struggle into early adolescence with
learning and implementing such strategies. For instance,
as reviewed in Question 6, children famously have trouble

2However, Hoch (personal communication) reports no evidence of
developmental trends in goal directed walking with age or experience
within the age ranges her research has considered. Cole, Robinson, and
Adolph (2016) found similar rates of goal-directed exploration in 13-
month-old (novice walkers) and 19-month old (experienced walker)
infants.

Psychon Bull Rev (2019) 26:1548–15871578



learning the principle of controlling variables (i.e., chang-
ing one thing at a time) and applying it spontaneously to
new problems (Chen &Klahr, 1999; Klahr & Nigam, 2004).
That is, without the right kinds of instruction, young chil-
dren tend to want to change many things at once, rather than
testing individual factors or variables of a causal system
in isolation. One reason for this preference, identified by
Kuhn, Black, Keselman, and Kaplan (2000), is that children
often have not developed a metastrategic understanding
of why controlling variables works and what different
inferences are warranted by conducting a confounded ver-
sus a controlled experiment. Interestingly, recent analyses
show that the control of variables is an effective, even
optimal (in the OED sense) strategy, only given particu-
lar assumptions about the causal structure of the environ-
ment (Coenen, Bramley, Ruggeri, & Gureckis, 2017).

A related example stems from work on children’s causal
reasoning. Bonawitz et al. (2010) presented young toddlers,
preschoolers, and adults with a sequence of two events
(first a block contacted a base of an object and then a toy
connected to the base started spinning). The question was
whether participants subsequently generated an intervention
(moving the block to the base) to test if this event was
causally related to the second one (i.e., the spinning toy).
Unlike preschoolers and adults, toddlers did not perform
this hypothesis test spontaneously, although they did come
to anticipate the second event from the first. To successfully
generate actions they required additional cues, like causal
language used by the experimenter, or seeing direct contact
between two objects (here, the two toys not separated by the
base). The authors hypothesize that this failure to generate
spontaneous interventions might be due to young children’s
inability to recognize the relationship between prediction
and causality, unless they are explicitly told or shown.

In sum, while the previous section provided evidence
that seems to support the idea that children identify and
explore in systematic ways, claims about the “child as
intuitive scientist” remain complicated by the evidence
that children struggle learning generalizable strategies of
acquiring information that are most akin to the actual
practice of science (e.g., control of variables). The question
of how kids get from the well documented motivations and
abilities that emerge in early childhood to the more complex
abilities of older children, adults, and scientists remains an
important contradiction in the field and is an important area
for future work. This is particularly challenging because it
is not clear what, in terms of computational components,
actually fails when children do not show mastery of the
control of variables. One hint is that it is sometimes easier
for children to acquire the control of variables strategy for
a particular domain or task than it is to identify how to
properly transfer that strategy to a new domain or task.
This suggest that aspects of problem solving and transfer

may be relevant parts of the answer (Gick & Holyoak,
1983; Catrambone & Holyoak, 1989). In addition, the
two examples described here point out that some type of
metaknowledge about the value and purpose of “fair tests” is
an important precursor for being able to reliably implement
such strategies. As mentioned above, these issues currently
fall somewhat outside the OED framework which deals
primarily with information action selection within a defined
goal and framework.

Children’s questions

The view of the child as an optimal (i.e., OED) scientist
is further complicated by the literature on children’s
question asking. As described in detail in Question 2,
asking interesting and information questions using language
is important over the course of cognitive development.
Children are notorious question askers, and even young
children seem to acquire question-like utterances within
the first few entries in their vocabulary (e.g., “Eh?” or
“Doh?” to mean “What is that?”) (Nelson, 1973). It
has been hypothesized that these pseudo-words aid in
the development of language acquisition by coordinating
information requests between the child and caregiver.

However, it is unclear if children’s questions reflect any
particular sense of optimality (Rothe et al., 2018). Part
of the reason is that most of the education research on
question asking in classrooms has focused on qualitative
distinctions between good and bad questions (see Graesser
et al., 1993; Graesser & Person, 1994; Chin & Brown,
2002). For example, studies might observe the types of
questions students ask in a lecture or while reading some
text as “deep” (e.g., why, why not, how, what-if, what-
if-not) in contrast with “shallow” questions (e.g., who,
what, when, where). Interestingly, the proportion of deep
questions asked in a class correlate with students’ exam
scores (see Graesser & Person, 1994). Such classification
schemes are useful starting places but do not yet allow
us to assess if this behavior is reflective of specific OED
principles.

To that end, more controlled experimental tasks have
shown robust developmental changes in children’s question
asking behavior. One classic finding is that younger children
(e.g., 7 to 8 years old) often use less efficient question-
asking strategies while playing a “20 questions”/”Guess
who?” game compared to older children (e.g., 9 to 11
years old) and adults (Mosher & Hornsby, 1966; Ruggeri &
Lombrozo, 2015). Younger children have been shown to use
very specific question asking strategies (e.g., “Is it Bill?” “Is
it Sally?”) that potentially rule out one particular hypothesis
at a time (sometimes called hypothesis-scanning questions).
In contrast, older children and adults ask constraint-
seeking question that can more effectively narrow down the
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hypothesis space (e.g., “Is your person wearing glasses?”,
“Is your person a man?”). This suggests that designing
sophisticated testing strategies that pertain to multiple
hypotheses is another skill that develops over time. Whether
this is due to limitations or changes in working memory
capacity, informational goals, or beliefs about the value of
evidence is still an open question.

At least some recent work has attempted to better under-
stand these patterns. For example, Ruggeri, Lombrozo,
Griffiths, and Xu (2015) found a developmental trend in
the degree to which children’s questions matched the pre-
dictions of an OED models based on EIG. However, they
explain that the apparent inefficiency in young children’s
questions stems from younger children adopting inappropri-
ate stopping rules (asking questions after they have already
determined the correct answer, see Question 8 above). In
addition, recent work that has attempted to unpack the con-
tribution to various component cognitive processes to this
ability (e.g., isolating the ability to ask questions from the
need to update beliefs on the basis of the answers) has found
a complex relationship between these issues even among
young learners. For example, forcing children to explicitly
update their hypothesis space with each new piece of evi-
dence actually led them to ask more optimal questions than
a condition where a computer interface tracked the evidence
for them (which the authors interpret as a type of ”desirable
difficulty” during learning, Kachergis, Rhodes, & Gureckis,
2017).

Summary

The studies reviewed in this section give a nuanced view of
the development of inquiry skills. In some cases, even very
young children seem remarkably successful at identifying
opportunities for learning. However, it is also clear that
children show difficulty in many places where they might
be expected to succeed (e.g., in learning scientific inquiry
skill directly, or in formulating informative questions). To
better understand children’s inquiry behavior, more work is
needed to unpack the individual components that contribute
to it, such as children’s theories about the world, their
cognitive capacities, and their understanding of their own
actions as means to test theories.

Final thoughts

Our review poses the following question: Are we asking
the right questions about human inquiry? Our synthesis
offers two summary insights. First, the OED hypothesis has
contributed a great deal of theoretical structure to the topic
of human inquiry. Qualitative theories have been superseded
by principled (and often parameter-free) models that often

explain human behavior in some detail. OED models have
been successful at providing explanations at different levels
of processing including neural, perceptual and higher-level.
Human inquiry is a very rich and open ended type of
behavior, so the success of the theoretical framework across
so many tasks or situations is remarkable. However, at the
same time OED has rather severely limited the focus of
research on human inquiry. Of course, constraining research
questions and methods is a necessary (and desirable)
function of a(ny) cognitive model or scientific paradigm, so
we do not claim that finding limitations of OED constitutes
a ground-breaking contribution in and of itself. However,
being aware of how current theories constrain our thinking
and critically reflecting on their merits is invaluable for
the long-term progress of our field. In this respect we
hopefully convinced at least some readers that the OED
theories suffer from a number of particularly troubling blind
spots. Some of the hardest questions about human inquiry,
including the motivational impetus to acquire information
about particular phenomena, are hard to accommodate
within OED formalisms. Furthermore, the richer set of
situations in which inquiry proceeds (e.g., natural language
question asking) remain important gaps in our current
understanding. These gaps matter because there is not
currently a plausible way to account for these behaviors
within the bounds of the OED framework and in many
cases it is doubtful that there ever will be. In addition, these
topics are exactly the situations that are most interesting
to other aligned fields where inquiry is a basic concern.
Perhaps the best illustration of the continued disconnect
is the fact that the OED hypothesis has become a widely
adopted and popular approach to study learning, but has
had little or no impact on current thinking in education.
Papers about OED models are almost never published in
education journals. Certainly some elements of this can be
chalked up to the different roles that formal models play
in different fields. However, it also must be acknowledged
that it still is difficult to apply OED models outside of
the carefully constructed experimental contexts studied by
psychologists.

The nine questions laid out in this paper hopefully offer
a way forward. We have attempted to highlight what we see
as the most exciting, difficult, and under-explored questions
about human inquiry. As we suggest throughout this paper,
answering these questions will likely require a number of
different experimental paradigms and modeling approaches,
many of which do not follow the classic structure of OED
studies. Our hope is that there are enough ideas presented
here that a graduate student might build a thesis around
any one of the topics raised. Before concluding, we believe
it is worthwhile to consider how answers to our questions
could lead to progress in a number of domains beyond basic
cognitive science.
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Education One contribution of this article is to elucidate the
set of constraints and prerequisites that surround people’s
ability to effectively learn from self-directed inquiry and
exploration. We argued that a solid understanding of these
constraints and their developmental trajectory, as well as,
ultimately, the development of computational models that
incorporate these constraints will help apply cognitive
science within educational contexts. What are some insights
of future work that could benefit educational practices?

Take as an example the first question we raise in
this paper, which challenges the assumption that people
can represent all possible hypotheses about some learning
domain. We suggested that future work should develop
models of hypothesis generation that take into account
constraints of the learner, for instance in terms of their
memory processes or cognitive resources. Progress in this
area could be directly applicable to the development of
adaptive learning systems, which are growing in popular-
ity both in schools (e.g., U.S. Department of Education,
2017) and as part of online learning tools that are used by
the broader population. The success of adaptive learning
systems crucially relies on being able to predict what infor-
mation would be most useful to a user (e.g., what materials
to train, re-train, and test them on). This, in turn, requires
an accurate representation of their current hypothesis space.
Integrating process-level theories of memory and resource
constraints into models of hypothesis generation could thus
lead to significant improvement of these technologies.

Another important line of research we highlight in this
paper concerns the relationship between active learning and
passive learning (e.g., in the discussion of the “ultimate
sampling dilemma” in Question 8). We point out that the
two modes of learning yield different benefits and thus work
best in different situations, depending on the context and
current knowledge of the learner. We hope that future work
will develop models that can determine mixtures of those
two modes of learning that optimize learning success in
particular subject areas. Insights from these models could
be used, for example, to design educational interventions
in subjects that rely on combinations of teaching and
experimentation (like many physical and life sciences).

Machine intelligence OED computations already play an
important role in the field of machine learning, where
they are often used to design so-called active learning
algorithms (Settles, 2010). Active learning is used to select
particular unlabeled items (e.g., images, text, or speech) and
have them labeled by a (human) oracle with the goal of
improving classification of future items. We have discussed
how human active learning can far exceed this particular
situation, for example with a breadth of different query
types and strategies that preserve computational tractability
of even complex queries. Some types of queries aim to

test concrete hypotheses (these are the “classic” OED
questions), some seek out relevant meta-knowledge (feature
queries), some address a particular knowledge gap, and
some merely follow shared conventions (asking “How are
you?”). Building a computational “repertoire” of these
different query types could be especially valuable for the
development of conversational machine intelligence, like
chatbots and digital assistants, that can ask and answer
questions in conversation with a human. Currently, these
technologies tend to be limited to fairly narrow domains,
beyond which they are unable to respond adequately to
users’ questions. Over the past few years, Machine Learning
researchers have started to develop models that generate
or answer a broader array of questions, specifically about
images (e.g., Jain, Zhang, & Schwing, 2017; Ren, Kiros, &
Zemel, 2015). However, these algorithms work by training
on large datasets of question-image pairs, and have no
way of taking into account the context of any given
conversation or features of the user (e.g., their current goal).
Psychologically-inspired models that can adapt to changes
in the subject, context, and goals of the conversation partner
would thus be enormously helpful in making these tools
more flexible and realistic.

Another point we raised above is the importance of
pragmatics in question asking. To be helpful to one’s human
counterpart and to draw the right conclusions from their
answers requires at least a basic model of their knowledge
and expectations, as well as the context of the conversation
(e.g., is this polite small talk, or does this person want me
to teach them something?). Recent work on human-robot
interaction has demonstrated just how important it is that
people perceive robots, with whom they collaborate on a
joint task, as adapting to their actions (Fisac et al., 2016).
It showed, for example, that a robot that acts optimally
with respect to the task can be immensely frustrating to
their human “partner” if the partner’s strategy happens
to be suboptimal. Computational models of how humans
interpret each other’s questions in a given context could be
used to improve artificial agents in their ability to account
for their conversation partner’s goals and constraints when
answering and generating questions.

Experimental methods What are the ramifications of
our discussion for experimental methods used within
psychology? We hope that the work we reviewed provides
yet another set of examples for why it is informative to
study people actively seeking information. Although this
view is not new and has gained momentum over the past
years, the vast majority of learning experiments still rely on
paradigms in which subjects passively observe a sequence
of stimuli preselected by the experimenter (Gureckis &
Markant, 2012). This approach is desirable because it gives
us experimental control over the information presented to
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participants, but it lacks one of the most crucial components
of real-world learning, that is, the ability to change our
environment, ask questions, and explore the world around
us. Through the development of sophisticated modeling
techniques, many of which are highlighted in this paper,
researchers are now developing research methodologies
that exploit the lack of experimental control, instead
of sacrificing validity because of it. Beyond the OED
framework, we have for example pointed to models of
pragmatic reasoning, sequential sampling, tree search, or
optimal stopping. All of these can provide windows into
different aspects of inquiry and, taken together, we believe
they make giving up some experimental control worthwhile.
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