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Abstract

People often make decisions with the goal of gaining informa-
tion which can help reduce their uncertainty. However, recent
work has suggested that people sometimes do not select the
most diagnostic information queries available to them. A crit-
ical aspect of information search decisions is evaluating how
obtaining a piece of information will alter a learner’s beliefs
(e.g., a piece of information that is redundant with what is al-
ready known is useless). This suggests a close relationship
between information seeking decisions on one hand, and be-
lief updating on the other. This paper explores the deeper re-
lationship between these two constructs in a causal interven-
tion learning task. We find that patterns in belief updating bi-
ases are predictive of decision making patterns in tasks where
people must make interventions learn about the structure of a
causal system.
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Introduction
A growing body of work has explored how people use inter-
ventions to learn about causal structures in their environment
(Bramley et al., in press; Coenen et al., 2014; Steyvers et al.,
2003). An example of an intervention would be to take a vi-
tamin in the morning to see how it makes you feel, or tapping
on a button in a video game to see what happens. Critically,
interventions are frequently made to gain information about
the underlying causal structure of world.

The calculus of causal Bayesian Networks and information
theory can yield precise normative predictions for the most
diagnostic interventions to help a learner figure out a causal
structure (Pearl, 2000; Murphy, 2001). However, in previous
work (Coenen et al., 2014), we found that people do not al-
ways choose the most diagnostic interventions predicted by
such theories. Instead, they frequently intervened on vari-
ables that would potentially lead to a lot of predicted effects
in at least one hypothesized structure, but without necessar-
ily distinguishing it from others. We called this tendency a
“positive-testing strategy” (PTS), because its desire to “make
expected effects happen” mimics the classic finding in the
rule learning literature that people often ask questions that
are likely to yield “yes” answers under a given hypothesis
(Wason, 1960; Klayman & Ha, 1989).

What motivates participants to make positive tests instead
of maximizing information during causal structure learning
(or hypothesis testing in general)? This article explores one
possible explanation of this behavior: It is possible that learn-
ers do try to maximize the information of their interven-
tions but errors in the way that people update their beliefs
draw them astray from optimal behavior. This hypothesis

exposes the deeper relationship between intervention deci-
sions/hypothesis testing and belief updating which has re-
mained somewhat ambiguous in past research.

In the next section we will illustrate how biased belief up-
dating might give rise to positive hypothesis testing. Then, we
will describe two experiments that test whether or not people
are biased in how they update their beliefs about causal struc-
tures, and if so, whether that bias influences their intervention
strategy.

Information search & belief updating
Note that historically, confirmatory behavior has been iden-
tified in both information search and information evaluation
(or belief-updating). For example, people seem to actively
seek positive evidence for individual hypotheses (e.g., when
they selectively research websites supporting their viewpoint
rather than seeking opposing ideas). In addition, people also
interpret evidence in a way that gives more weight to posi-
tive rather than negative outcomes (Nickerson, 1998; Klay-
man, 1995). For example, upon passively hearing of a politi-
cian’s new budget proposal, people might focus on aspects
that support their hypothesis about the general motivations of
the politician. However, the link between these two different
notions of “confirmation bias” is often unclear.

To illustrate how these two behaviors might be connected
with each other and how belief-updating in particular can in-
fluence a learner’s intervention strategy, consider the equa-
tion of Expected Information Gain (EIG). EIG is one of the
most prominent models for human decision making during
information search, including causal intervention learning
(Steyvers et al., 2003; Nelson, 2005; Markant & Gureckis,
2012; Oaksford & Chater, 1994).

In a causal setting, the model calculates the relative infor-
mativeness of different interventions that a person could make
on a causal system. Thus, the model is primarily a decision
making model, where the goal is to obtain useful informa-
tion. Formally, the model assumes that the learner’s hypothe-
sis space, G, consists of a set of possible underlying causal
graphs. For a learner trying to minimize their uncertainty
about G (i.e., discern which graph or set of graphs is most
likely) the model calculates a score, EIG(a) for each possi-
ble action or intervention a, taking into account all possible
intervention outcomes, Y :

EIG(a) = H(G)−∑
y∈Y

P(y|a) ∑
g∈G

P(g|a,y)log
1

P(g|a,y)
(1)

where H(G) refers to the Shannon entropy over the posterior



of the hypothesis space and P(g|a,y) is obtained using
Bayes’ rule: P(y|g,a)P(g)/P(y|a). The dependency of this
equation on P(g|a,y) highlights how the EIG equation always
involves an explicit belief updating step. Intuitively, EIG
evaluates an action by imagining how different outcomes as a
result of that action would change the learner’s belief. Thus,
according to the model, belief updating is fundamental to
judging the information value of an action or decision. The
goal of this paper is to explore if this intrinsic relationship
holds for human reasoners.

Potential updating biases and their impact on decision
making. It is interesting to consider the ways that incorrect
belief updating would alter causal intervention decisions. Let
us momentarily take it as given that people use the Equation 1
to evaluate the informativeness of an intervention. How could
it be that their choices appear suboptimal?

One possibility is that people may be biased in how they
assess P(y|g,a), the likelihood for an outcome to occur after
an intervention on a specific graph. Specifically, they might
assign higher likelihoods to outcomes that activate larger por-
tions of a graph. Such a tendency would be in line with previ-
ous work showing that people are more strongly affected by
positive rather than negative evidence when evaluating hy-
potheses (for a summary, see Klayman, 1995). If outcome
likelihoods are higher for positive observations (e.g. full ac-
tivation of a graph), EIG will also be higher for interventions
that lead to those observations.

As another possibility, learners may also deviate from a
normative account in how they incorporate the prior proba-
bility of an intervention outcome, P(y|a). Previous work has
shown that people often exhibit a tendency to disproportion-
ately evaluate hypotheses based on their likelihood of pro-
ducing an event or outcome alone, irrespective of its proba-
bility of occurring under alternative hypotheses (Kahneman
& Tversky, 1973, 1972; Doherty et al., 1979). In this case, if
learners decrease or ignore P(y|a), they will be more likely
to choose interventions that are not actually diagnostic, be-
cause the same outcome is predicted by multiple graphs. In
that case, they might take an outcome to be supportive of one
of the graphs, while ignoring that it’s equally well supported
by an alternative one.

In summary, different biases in belief updating could,
according to the theory, alter decision making strategies even
if people otherwise perfectly followed the basic (normative)
tenets of Equation 1.

Explaining intervention data. To make this discussion
more concrete, we will describe two examples of biased in-
tervention strategies from our past findings (Coenen et al.,
2014). In this previous study participants were presented with
a virtual “computer chip” made up of various components. In
addition, they were provided with two possible wiring dia-
grams that could detail how the components were connected
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Figure 1: Example intervention problems with choice data from
Experiment 1 in Coenen et al. (2014). Participants were presented
with two possible wiring diagrams (shown under “Hypotheses”) and
were asked to make an intervention on the system to determine the
correct causal structure. The height of the black bars under “Inter-
vention choices” show the frequency by which different elements of
the causal system were intervened on by participants. For example,
in panel A, no participants selected node n1, but people were split
between n2 and n3.

to one another. Interventions activated a component which
in turn (might) activate other components. Participants’ task
was to intervene on different chip components in order to
learn the true wiring diagram.

In our previous study, we found that participants chose in-
terventions that have low EIG if these queries offer the possi-
bility of activating a full causal graph. For instance, in Figure
1A many participants chose to intervene on the root node,
n2, of both graphs, which most frequently led to confound-
ing evidence of all nodes turning on. This behavior could
have been caused by the two types of updating biases de-
scribed in the previous section. That is, if participants ig-
nore the fact that the same outcome be produced by both
hypothesized graphs (neglect of P(y|a)) and they give more
weight to positive outcomes (increase of P(y|g,a) if a graph
is completely activated), intervening on n2 becomes an at-
tractive option because it can produce all predicted effects
in either graph. Learners might think that the confounding
“all-on” outcome actually provides strong evidence for one
of the graphs (which may be chosen randomly, or based on a
learner’s prior preference).

We also found that by choosing interventions with ex-
pected positive outcomes, participants often forgo queries
that have very high EIG, such as portrayed in Fig 1B. Here,
intervening on n2 has the potential of discriminating between
the two graphs, but does not offer a chance to see either of
them be completely turned “on”, because the outcome would
either be a half-activated chain graph or nothing happening
whatsoever. If people weigh positive evidence higher than
negative (or less positive) evidence then perhaps both of these
outcomes would be deemed less informative than they actu-
ally are, which could explain why most participants chose one
of the other two interventions, n1 or n3.



Overview of the present study
The two experiments reported in this paper attempt to as-
sess the relationship between belief updating and intervention
choice. In particular, we assumed that there are individual
differences in belief updating that might explain variation in
decision strategies.

In order to quantify difference in belief updating, in Exper-
iment 1 we created a causal learning task where people were
instructed to make interventions on a causal system and to
subsequently rate the posterior belief about the correct graph.
Trials were constructed to be revealing about biases towards
the overweighting of positive but non-diagnostic evidence
compared to less positive (or negative) diagnostic evidence.

In Experiment 2 we attempted to establish a link between
updating strategies and intervention choice strategies. In ad-
dition to the instructed trials designed to assess belief updat-
ing, participants also had to make a range of self-selected in-
terventions. Using model-based analyses we quantified the
tendency of those choices to conform to either information-
maximizing interventions (in line with EIG) or PTS interven-
tions and related these scores to the estimates made in the
belief updating phase of the task.

Experiment 1
Participants
Sixty-one US-based participants were recruited via Amazon
Mechanical Turk. They were paid $2 for participating in the
study.

Stimuli
The same set of 20 causal intervention problems (10 critical
trials, and 10 control trials) were given to each participants.
Each problem consisted of two causal hypotheses (three-node
graphs), a prescribed intervention (node), and the outcome
of that intervention (which nodes turned “on” as a conse-
quence). The critical trials were specifically designed to re-
veal any belief updating bias that we hypothesized to under-
lie positive hypothesis testing, that is, they were interventions
in which the outcome was either diagnostic but without ac-
tivating any graph completely (like in Figure 1B), or it was
non-diagnostic, but showing all expected outcomes of at least
one graph (like in Figure 1A). The control trials were either
diagnostic and showing a graph activated completely or non-
diagnostic and without any full graph’s activity. Thus, they
did not pose the same conflict between diagnosticity and pos-
itive outcomes.

The two trial types were randomly interspersed without the
knowledge of the participants. When causal graphs were pre-
sented on the screen the order of nodes was always random-
ized and they were also randomly placed in three out of five
positions on the screen.

Procedure
Participants were told that they had to test a series of com-
puter chips in a chip factory to figure out how they worked.

Beginning: All nodes
are “off”

Click to intervene on
instructed node 

States of other components
 update

Estimate posterior

What type of chip
was this?

Def. RightDef. Left n.s.

Figure 2: Schematic procedure for the instructed intervention tri-
als. Participants were asked to intervene (click on) the node with the
yellow outline and subsequently observed the outcome of their in-
tervention (other nodes turning on or remaining turned off). Using a
slider, they then gave their posterior estimate about which hypothe-
sized graph was more likely to underlie the chip they just intervened
on.

For each chip, they were given two possible arrow diagrams
that illustrated the two hypothesized causal graphs that ex-
plain the working of a chip (see Figure 2). They were then
instructed to turn on one specific “component” (node) on the
chip by clicking on it and observe the outcome (other com-
ponents also turning on or remaining turned off). Next, they
were asked to rate which chip diagram was an accurate de-
scription of the chip they just tested. They gave their answer
using a continuous slider with three labels on the left, middle,
and right (“definitely Type 1”, “not sure”, “definitely Type
2”).

Before starting the task they were explicitly told that causal
links between components only worked 80% of the time and
that components could only be turned on by each other or an
intervention, but not by any other background causes. Partici-
pants had to accurately pass a short quiz about the task before
being allowed to proceed to the main part of the experiment.

Results & Discussion
Figure 3 shows histograms of participants’ posterior esti-
mates after each intervention/outcome trial. The red dot indi-
cates the true posterior probability of the graphs derived using
Bayes’ rule and the correct outcome likelihoods of the two
graphs given each intervention. The red arrows in the critical
trials indicates the direction in which one would expect par-
ticipants to be biased based on our predictions outlined above.
We would like to particularly guide the reader’s attention to
three findings.

First, especially on the control trials participants’ estimates
track the true posterior probabilities of the graphs well, that
is, the highest density of choices is typically found at or very
close to the red dots in the plot. This shows that generally
participants understood the task and were able to evaluate in-
tervention outcomes correctly.

Second, the mapping between true and estimated probabil-
ity is less pronounced on the critical trials (see panel A). Here,
participants’ estimates are often skewed in the direction of the
red arrow, that is, in line with the above predictions about up-
dating biases. Without discussing every single deviation in



detail, estimates on the objectively non-diagnostic trials (i.e.
those with a posterior probability of 0.5) in the first four tri-
als from the top are particularly noteworthy. Here, the sys-
tematic deviation from the true posterior cannot be due to a
tendency towards indifference (probability of 0.5). Consider
for example trial no. 2, in which many participants strongly
endorsed the One-Link graph on the left, even though the ev-
idence equally supports the alternative Common Effect graph
on the right. Again, the reason we suspect this deviation hap-
pens is that participants place too much emphasis on the fact
that they can observe all possible activity predicted by the
One-Link structure, but not of the Common Effect.

Thirdly, another interesting deviation from the true poste-
rior is found on the very first trial type, in which all compo-
nents are turned on after an intervention on the middle node,
which is the root of both a Chain and a Common Cause graph.
As discussed earlier, this root node intervention is one that
many participants actually chose in a previous experiment
(see Figure 1A) and this finding might be able to help explain
why: Participants may have thought that they can actually
learn something from the all-on outcome. It is puzzling, how-
ever, that participants mainly endorsed the Common Cause
structure rather than the Chain, since the outcome provides
equal positive evidence for both. One could speculate that
the immediacy of the Common Cause links in connection to
the root node may have contributed to this tendency, but ulti-
mately this finding requires further investigation. In any case,
this result demonstrates a relatively strong violation of opti-
mal belief updating.

In sum, we find that participants do exhibit a tendency
to erroneously change their probability estimates away from
indifference if one or both of the structures are completely
activated through an intervention. They also do not change
their beliefs enough if a diagnostic outcome is not activating
a complete graph. However, this bias is by no means found to
be equally strong in all trials and participants’ estimates were
much more accurate in the control trials, showing that gen-
erally people’s updating process tracks the correct posterior
probability of the graphs.

Experiment 2
Having found that participants show greater deviations from
optimal belief-updating when diagnosticity and positive out-
comes of individual graphs were at odds with each other, the
second experiment aimed to find out whether the tendency to
show this bias is at all related to people’s intervention strat-
egy. Since we argue above that biased belief-updating might
be the reason that people often conduct positive tests rather
than maximally diagnostic ones, we predict that participants
with biased belief updating should be more likely to conduct
positive tests.

To test this, we added a free intervention task to the ex-
periment which participants completed either before or after
a series of instructed interventions. The goal was to quantify
both a participant’s intervention strategy and their belief up-
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Figure 3: Histograms of participants’ probability estimates. Each
row represents one trial type in which two causal hypotheses were
compared. Crosses indicate nodes that participants were instructed
to intervene on (turn the nodes “on”). Grayed out nodes remained
“off” after the intervention, the remaining nodes were also observed
to be “on”. Red dots in the critical trials indicate the posterior graph
probability according to accurate Bayesian belief updating. Red ar-
rows indicate the predicted direction of positive outcome bias.



dating bias to investigate if there exists a connection between
the two.

Participants
121 US-based participants were recruited via Amazon Me-
chanical Turk. They were paid $2 for participating in the
study.

Stimuli
In the instructed intervention phase, participants saw the same
20 trial types as in Experiment 1 with one small change. The
two trials in which the predicted bias was bi-directional (tri-
als 1 and 3 in Figure 3) were replaced with trials that had a
unidirectional predicted bias. This was done to make it eas-
ier to quantify updating biases specifically in one direction
as pertaining to our predictions, without confounding it with
general noisiness in participants’ use of the slider, for exam-
ple.

In the free intervention phase, participants were given 20
intervention problems that were used in a previous set of ex-
periments reported in (Coenen et al., 2014, see Figure 2), and
were used to characterize people’s intervention strategies on
a continuum between positive testing (PTS) and information
maximization (EIG).

Procedure
The procedure was identical to that in Experiment 1 except
that in the free intervention trials participants were instructed
to choose freely which node to intervene on. Again, there was
no feedback about the correct structure at the end of a trial.

Results & Discussion
To quantify people’s intervention strategies we used the
method developed and reported in Coenen et al. (2014) which
results in a strategy weight θ that indicates the degree to
which a participant’s interventions are in line with the EIG
strategy of information search (θ = 1) compared to a con-
firmatory PTS strategy (θ = 0). In comparison to our own
previous work on intervention strategies, the current experi-
ment yielded a larger portion of PTS-interventions and fewer
participants that were strong EIG users (as a rough indication,
only 30% of participants were fit with θ > .5, compared with
47% in our previous study). Due to the unequal distribution
of participants’ best-fitting θ values we use a median split to
divide participants into two equal groups of low-θ and high-
θ for the analyses reported below, bearing in mind that the
high-θ group contained many participants from the middle of
the distribution, however.

To quantify each participant’s tendency to commit the up-
dating error we hypothesized and found in Experiment 1, we
first computed the average deviation of participants’ proba-
bility estimates from the true posterior in the hypothesized di-
rection on the critical trials (i.e. in the direction of the arrows
in Figure 3A). Because this deviation score will be higher if
a participant is generally noisy in their posterior probability
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Figure 4: Updating error and positive outcome bias by strategy
weight and task order. Low-θ participants were better fit by a posi-
tive testing strategy and high-θ participants by the EIG model.

estimation, we regressed this directional deviation on the av-
erage absolute deviation in the control trials (see Figure 3B)
and used the residuals as a measure of positive-outcome bias.

For brevity’s sake, we will only report two analyses that re-
late the binary strategy weight with the the quality of belief-
updating. Figure 4 shows how the two groups of participants
(low-θ and high-θ) compare in terms of overall error (aver-
age absolute deviation from the true posterior in the control
trials) and on the positive-outcome bias measure (residuals
after controlling for overall error). The plots are split by the
order of the instructed and free intervention tasks, which was
counterbalanced between participants.

Note that there exists a significant relationship between
strategy weight and error on the control trials, t(119) = 4.84,
p < .001. Participants with more discriminatory interven-
tion choices (more in line with EIG), also made more accu-
rate probability estimates than participants better fit by a PTS
strategy.

The relationship between strategy weight and positive-
outcome bias, on the other hand, is much weaker. Overall,
it is still significantly negative, so that bias is lower for high-
θ participants, t(119) = 2.34, p = .02, but the effect seems
driven by participants in the group that received the free in-
tervention task first.

One caveat of this analysis is the way in which the positive-
outcome bias is defined. In an effort to isolate it from a
participant’s general tendency to make errors on the poste-
rior estimates, it is possible that some relevant variation may
have been lost. For example in people who are both biased
and noisy, removing the noise component may have made it
look as if they showed no bias at all. Taken together with
the lack of high-θ participants, the last analysis need to be
treated with some caution and should be backed up by further
experiments.

General Discussion
In this paper we explored how people update their beliefs af-
ter performing causal interventions and observing their out-
come. Having previously found that participants often per-
form interventions that can cause positive outcomes in indi-
vidual graphs, we predicted that this may be due to a tendency
to treat these outcomes as particularly informative (whether



or not they actually are).
Several findings from these experiments stand out.
First, it is important to note that participants were often

very good at updating their beliefs in a normative fashion,
particularly when diagnosticity and outcome positivity (i.e.
the degree to which outcomes involve all effects predicted
by individual graphs) were not in conflict. This finding ties
in with earlier work demonstrating that people are effective
causal learners who understand the basic mechanism of an
intervention (see e.g., Lagnado & Sloman, 2004; Hagmayer
et al., 2007; Bramley et al., in press).

However, Experiment 1 showed that there was a greater
tendency to deviate from the true posterior probabilities when
diagnosticity and outcome-positivity were at odds. On those
trials, we found considerable deviation from optimal belief-
updating in participants’ posterior probability estimates. In
particular, participants often endorsed graphs more strongly
than they should if all of their predicted effects could be ob-
served. This shows that people are not purely engaged in
Bayesian belief-updating when observing intervention out-
comes. Instead, they may sometimes be influenced by the de-
gree to which outcomes reflect a fully activated causal struc-
ture, while ignoring the question whether or not an outcome
actually discriminates between structures.

Experiment 2 further showed that people who conduct
more positive tests when choosing interventions were more
likely to commit belief-updating errors in general. Thus there
appears to be a relationship between people’s intervention
strategy and their subsequent ability to learn from these in-
terventions. Whether or not this relationship is specific to
the positive-outcome updating error as we hypothesized, and
which was found in Experiment 1, remains an open question.
Although Experiment 2 found a significant relationship be-
tween strategy and positive-outcome bias overall, it was a rel-
atively weak one.

As we pointed out, the data in Experiment 2 had some
undesirable properties, such as a lack of variability in par-
ticipants’ intervention strategies, with a much larger number
leaning towards positive testing, rather than discriminatory
search. It also proved challenging to disentangle the general
tendency to commit updating errors with the specific type of
bias that we intended to isolate. Future work should there-
fore aim to find a better method to distinguish the two. Con-
cretely, we suggest a follow-up experiment with a stronger
manipulation, such as training participants on how to evalu-
ate intervention outcomes and test whether that has an effect
on subsequent intervention decisions. Such a manipulation
would be able to show a more direct link between these two
aspects of intervention learning.

In sum, we believe that these studies offer a first attempt
to study how people update their beliefs about causal sys-
tems from intervention data and the experiments reported
here show some noteworthy patterns of errors that affect par-
ticipants in this process. Future research is needed to clarify
exactly how causal learning and hypothesis-testing interact.
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