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From a cognitivist standpoint, one main interest of psy-
chology is the study of representations of the human mind as
they mediate how people react to stimuli in their environment
(Palmer, 1978). This can explain why two people that en-
counter the same stimulus can behave in very different ways
(Chomsky, 1959). For example, an art historian viewing a
Jackson Pollock painting may exclaim “this is beautiful” due
to her representation of his work as a rejection of painting
with a brush; however, a lay person may say “this is ugly” due
to his representation of the painting as a cluttered mess of col-
ors. Without knowledge of the representations of each person
in this example, it would be nearly impossible to explain their
behavior when interacting with the Jackson Pollock painting.

Over the last three decades, cognitive psychologists have
demonstrated that the representations people use can change
flexibly to capture changes in their environment (Hoffman &
Richards, 1985; Schyns, Goldstone, & Thilbaut, 1998; Gold-
stone, 2003). However, if the representations we use are de-
termined by the stimuli in our environment, this threatens the
explanatory utility of representations as it could be superflu-
ous to use representations to explain people’s reaction to stim-
uli if the representations are determined by the stimuli. Thus,
cognitive psychologists need to explicitly formulate how rep-
resentations change with experience.

Although computational modelers, from connectionists to
Bayesians, disagree on many things, one thing they do agree
on is the importance of representations in their models (Mc-
Clelland et al., 2010; Griffiths, Chater, Kemp, Perfors, &
Tenenbaum, 2010). Recently, there has been a growing in-
terest in exploring computational models that adapt their rep-
resentations with experience in ways that match this human
capacity. In this symposium, we explore computational mod-
els that adapt their representations with experience in ways
that are inspired by the human capability.

Recently, there have been several proposals for computa-
tional models whose representations flexibly adapt to the in-
put data like people do; however, there has not been a thor-
ough comparison of the different models. The goal of the
symposium is the compare and contrast the different meth-
ods, evaluate their ability to capture of human representation
learning, and make explicit what is meant in each model by
“representation change” as this can be a controversial claim
(Schyns et al., 1998). Currently, it is not clear whether or not
the different proposals mean the same thing by a “representa-
tion” and if they are competing proposals to explain the same
aspect of human cognition or different levels of explanation.
Thus, the symposium will emphasize understanding what is

meant by representation change and how well each model can
explain human representation change.

The symposium will focus on a wide variety of methods
for representation learning from some of the most popular
computational paradigms in computational cognitive science:
nonparametric Bayesian modeling (Austerweil & Griffiths;
Canini & Griffiths), connectionist modeling (Gureckis; Gold-
stone), and reinforcement learning (Jones). Importantly,each
presenter will focus on how their computational proposals ex-
plain human experimental data and discussing what exactly is
a representation in their framework and how they are inferred.
Thus, the symposium should be interesting to a broad audi-
ence of cognitive scientists (from computation modelers to
experimentalists to philosphers). We hope it inspires a growth
of new computational models and human experiments in this
underdeveloped, yet incredibly important, aspect of cognitive
science.
Introduction and Nonparametric Bayesian Models of Fea-
ture Learning
Austerweil and Griffiths Cognitive psychology is concerned
primarly with representations and how they mediate the re-
sponse to stimuli. In this talk, we present a framework for
exploring the principles underlying human feature learning
using nonparametric Bayesian statistics. We show that our
framework can capture how people infer features using sta-
tistical information of the observed images, spatial informa-
tion from the observed images, and categorization cues. Next,
we extend our initial framework to infer features that are in-
variant over a set of transformations and demonstrate that the
model infers new invariant features like people do. Although
most shapes and features can be transformed by translations
and rescalings, some shapes and features lose their identity
when rotated. We show how our model is easily extended
and people can infer the allowable set of transformations from
their observations. Finally, we conclude with the implications
of our framework for reference frames in shape perception
and feature-based cognitive models and compare it to other
approaches for inferring representations.
Building flexible categorization models by grounding
them in perception
GoldstoneOne limitation of most existing models of catego-
rization is that they do not start with a perceptually grounded
representation of the objects that they categorize. Instead,
they use dimensional or featural representations that discard
information about the spatial relations among an object’s
parts. This restricts the models’ ability to create psycho-
logically plausible object representations that can be flexibly
adapted to meet categorization demands. I will describe a
neural network model, C-PLUS, that creates part-based rep-



resentations of objects that honor perceptual constraintssuch
as proximity and good continuation. Using a modified com-
petitive learning algorithm for object segmentation, it decom-
poses a set of incrementally presented objects into parts that
can be composed together to regenerate the set of objects to
be categorized. These parts are learned at the same time that
weights from the parts to categories are learned, allowing
perceptual representations not only to guide categorization,
but categorization to guide perceptual representations aswell.
The model is applied experimental results on the unitization
of object elements into complex wholes, learned differentia-
tion of originally fused encodings into parts, and experience-
dependent changes to selective attention abilities.

Constructing representations through reinforcement
learning by improving generalization
JonesOne critical role of representations in cognition is that
they determine patterns of similarity, and hence general-
ization, among stimuli or situations. To the extent that two
stimuli have similar representations, past experience with
one will have a large influence on the learner’s response
to the other. Thus a reasonable goal is to develop repre-
sentations that induce appropriate generalization, in that
stimuli with similar consequences or appropriate actions
will tend to have similar representations. This connection
suggests a mechanism for representation learning, based on
improving generalization in response to prediction error.We
present a formal framework instantiating this idea, in which
representation learning is driven by the temporal-difference
(TD) error from reinforcement learning. The model explains
patterns of human learning to shift attention among stimulus
features, according to how well different features capture
the structure of a task. We will also present evidence
supporting a counterintuitive prediction of the model in
which reduced training can lead to improved asymptotic
performance, resulting from order effects that emerge from
the model’s incremental learning mechanism. This finding
illustrates an important advantage of mechanistic modeling
over computational-level (e.g., Bayesian) approaches

A nonparametric hierarchical Bayesian framework for
modeling human categorization
Canini and Griffiths

Traditional models of human categorization typically fall
into one of two groups: prototype models, which use mini-
mally complex category representations, and exemplar mod-
els, with maximal complexity. Ashby and Alfonso-Reese
(1995) showed that these can both be described in the frame-
work of probability density estimation. Within this frame-
work, we can identify a new class of psychological models
using mixture distributions. Indeed, several researchershave
begun to explore this possibility. We present a unifying model
for categorization models based on the statistical tool of non-
parametric hierarchical Bayesian modeling. The overarching
model, called the hierarchical Dirichlet process (HDP), pro-
vides a flexible, formal account of category learning for both
individual categories and interrelated systems of categories.

Its behavior can replicate that of prototype models, exemplar
models, and more recent mixture models, as it adjusts the
complexity of its representations in response to the observed
data. The HDP can also be used to introduce dependencies
in the learning of multiple categories, allowing us to give a
formal account for previously unexplored aspects of human
category learning such as transfer learning and taxonomy in-
duction.
Endnote: Breaking Sticks or Building Clusters? Repre-
sentation Building, Learning, and the Brain
Gureckis Traditional models of human learning tend to focus
on parameter inference, in that learning involves adjusting the
internal parameters of an a-priori fixed architecture. How-
ever, a key feature of human learning is the discovery and
growth of new representations that help us to interpret and in-
teract with the world. The work reviewed in this symposium
offers at least two distinct ways of thinking about this psy-
chological process. Innovations in non-parametric Bayesian
statistics have ushered a new generation of probabilistic mod-
els that can flexibly adjust the complexity of their represen-
tation using stochastic process priors (e.g., the “stick break-
ing process”). Other theorists take a bottom-up approach to
representation building, focusing on the incremental learning
mechanisms that give rise to representational change (e.g.,
incremental clustering models). In my talk, I explore the ten-
sion between these two approaches using examples from the
categorization and sequential pattern learning literatures. I
place a particular emphasis on the psychological content of
each approach as well as consistency with the neural systems
thought to be involved in particular types of representation
building (e.g., episodic memory systems). Ultimately, I argue
that the gulf between these approaches need not be wide, if
both sets of theorists are clearer about the critical importance
of the inference mechanism used to drive predictions in their
models.
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