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Summary. Our laboratory has been studying the emergence of collective search
behavior from a complex systems perspective. We have developed an Internet-based
experimental platform that allows groups of people to interact with each other in
real-time on networked computers. The experiments implement virtual environments
where participants can see the moment-to-moment actions of their peers and imme-
diately respond to their environment. Agent-based computational models are used
as accounts of the experimental results. We describe two paradigms for collective
search: one in physical space and the other in an abstract problem space. The phys-
ical search situation concerns competitive foraging for resources by individuals in-
habiting an environment consisting largely of other individuals foraging for the same
resources. The abstract search concerns the dissemination of innovations in social
networks. Across both scenarios, the group-level behavior that emerges reveals in-
fluences of exploration and exploitation, bandwagon effects, population waves, and
compromises between individuals using their own information and information ob-
tained from their peers.

1 Introduction

The purpose of much of human cognition can be characterized as solving
search problems. Concrete examples of important search problems facing us
are finding food, friends, a mate, shelter, and parking places. More abstract
examples of search are scouring the Web for valuable data, finding a scientific
research area that is novel yet impactful, and finding sequences of moves that
will allow us to play an effective game of chess. In the concrete cases, the
sought-after resources are distributed in an actual physical space, and people
have to move through this space to sample locations for the desired resource. In
the abstract cases, if spaces exist at all, they are formal constructions, they will
often times have more than three dimensions, and they may not operate under
standard Euclidean metric assumptions. Despite these differences between
abstract and concrete search problems, there is a growing sentiment that they
may share fundamental cognitive operations [31,63]. Pursuing this premise,



278 Robert L. Goldstone et al.

we juxtapose concrete and abstract search paradigms to reveal some of this
shared cognitive underpinning.

The notion that cognition centrally involves search is hardly new. It was
the motivation for Newell and Simon’s classic work [47] on solving problems
by searching for sequences of operators that would take an agent from an
initial to a goal state. However, in this work, and the considerable body of
subsequent work in cognitive science that it inspired, the focus has been on
individuals solving problems on her own or in teams. Our work focuses on
individuals searching for solutions in an environment that consists of other
individuals also searching. The motivation for this focus is that individuals
rarely solve important problems in isolation from one another, in controlled
laboratory cubicles. For example, one can think of the continued advancement
of science and technology as a massive, real-world collective search problem.
Although we might view the individual scientist as a single solution-searching
unit, in fact each scientist’s work is influenced by their own discoveries and
the successes, failures, and current efforts of others. Indeed, the presence of
peers with similar motivations fundamentally changes the search process for
any individual. Depending upon the circumstances, individuals will be either
attracted to or repelled by the solutions of others. Attraction occurs when the
cost of exploring a problem space on one’s own is high [6] and when others can
act as informative scouts for assessing the quality of solutions that would be
costly to personally gauge. Repulsion occurs when competition for resources is
keen and early consumers of a resource can preempt the effective consumption
of the resource by subsequent individuals. In a world that consists of many
individuals competitively searching their environment for resources, it is not
enough to employ efficient, independent search strategies. Individuals also
need to know when to modify their own search to follow others’ leads or,
conversely, to avoid the crowd. One’s peers are a big part of one’s environment.

The importance of one’s peers does not stop there, because peers change
the rest of the environment as well. When limited resources—like bananas,
but not like Web sites—are used, they are no longer available for others.
In these cases, one individual’s consumption negatively affects the resources
available for the rest of the group. However, the influences that individuals
have on the environment need not only be competitive. For Web sites, use may
facilitate subsequent use, as when early users’ preferences are used to make
helpful suggestions for subsequent users [10]. A generalization of this notion of
affecting peers by affecting their environment is the notion of stigmergy. Stig-
mergy is a form of indirect communication between agents that is achieved
by agents modifying their environment and also responding to these modifi-
cations [12]. This effect has been well documented in ant swarms, in which
ants lay down pheromones as they walk that attract subsequent ants [62]. An
analogous stigmergic effect is achieved by “swarms” of humans that make a
terrain more attractive to others by wearing down the vegetation with their
own steps [26,27,30]. Stigmergy has recently been proposed as an important
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mechanism for achieving multirobot cooperation [32] and robustly interacting
software systems [50].

For these reasons, searching in a group changes the essential nature of the
search process. The experiments and computational models that we describe
concern this process of collective search. Our approach stresses the macro-
scopic, group-level behavior that emerges when the groups’ members pursue
their self-oriented strategies. This work is an effort to complement cognitive
scientists’ tendency to focus on the behavior of single individuals thinking and
perceiving on their own. Social phenomena such as rumors, the emergence of
a standard currency, transportation systems, the World Wide Web, resource
harvesting, crowding, and scientific establishments arise because of individ-
uals’ beliefs and goals, but the eventual form that these phenomena take is
rarely dictated by any individual [25].

2 Foraging for Concrete Resources

A problem faced by all mobile organisms is how to search their environment
for resources. Animals forage their environment for food, Web users surf the
Internet for desired data, and businesses mine the land for valuable minerals.
When an organism forages in an environment that consists, in part, of other
organisms that are also foraging, then unique complexities arise. The resources
available to an organism are affected not just by the foraging behavior of the
organism itself, but also by the simultaneous foraging behavior of all of the
other organisms. The optimal resource foraging strategy for an organism is no
longer a simple function of the distribution of resources and movement costs,
but it is also a function of the strategies adopted by other organisms.

2.1 Group Experiments on Foraging

One model in biology for studying the foraging behavior of populations is the
ideal free distribution (IFD) model [16,58]. This model assumes that animals
distribute themselves among patches so as to maximize the gained resources.
The specific assumptions of the model are that animals (1) are free to move
between resource patches without cost, (2) have correct (“ideal”) knowledge
of the rate of food occurrence at each patch, and (3) are equal in their abilities
to compete for resources. The model predicts an equilibrium distribution of
foragers such that no forager can profit by moving elsewhere. This condition is
met if the distribution of foragers matches the distribution of resources across
patches.

Consistent with this model, groups of animals often distribute themselves
in a nearly optimal manner, with their distribution matching the distribution
of resources. For example, [21] distributed edible larvae to two ends of a tank
filled with cichlid fish. The food was distributed in ratios of 1:1, 2:1, or 5:1.
The cichlids quickly distributed themselves in rough accord with the relative
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rates of the food distribution before many of the fish had even acquired a
single larva and before most fish had acquired larvae from both ends.

Although animals frequently distribute themselves in approximate accord
with an ideal free distribution, systematic deviations are also observed. One
common result is undermatching, defined as a distribution of animals that is
less extreme than the distribution of resources [36]. An example would be a
75/25 distribution of foragers when the resources have an 80/20 distribution.
When undermatching occurs, there are fewer animals at the richer patch,
and more animals at the leaner patch, than is optimal. The few experiments
that have examined group foraging behavior with humans have also found
undermatching [38,42].

Our experiments extend the previous studies of group foraging in humans
in a few directions. First, we have developed a computer-based platform for
the foraging experiment that allows us to manipulate experimental variables
that would be difficult to manipulate in a more naturalistic environment. Sec-
ond, we collect second-by-second data on the amount of resources and number
of participants at different pools, which allows us to explore variation in re-
source use with high temporal resolution. Third, although our environment is
virtual, it is naturalistic in one important respect: resources are distributed
in a continuous spatial environment rather than at two discrete locations.
Fourth, we do not designate or identify the resource alternatives to partici-
pants. As in many natural situations [36], the participants must discover the
number and locations of resource patches themselves. Using our virtual en-
vironment with interacting participants, we manipulated the relative outputs
of the different resource pools and the knowledge possessed by the agents. In
Godin and Keenleyside’s experiment with cichlids [21], every cichlid could see
the other cichlids as well as the larvae resources at both ends of the tank. Gal-
listel [17] argued that this kind of information is important for the cichlids to
distribute themselves rapidly in accord with the resource distribution. They
are learning about the resource distributions by observing events that do not
directly involve themselves. However, in individual reinforcement learning sit-
uations, an agent only has access to the outcomes of its own actions. It does
not have access to the values of options not selected. Both situations occur
naturally, and it is possible that the ability of a group to efficiently distribute
itself to resources depends on the information at each agent’s disposal [61].

In Experiment 1 [23], two resource pools were created with different rates
of replenishment. The participants’ task was to obtain as many resource tokens
as possible during an experiment. A participant obtained a token by being the
first to move on top of it. Resources were split evenly 50/50, or had a 65/35,
or 80/20 split. In our visible condition, each participant could see each other
and the entire food distribution. In our invisible condition, they could not
see other participants, and they gradually acquired knowledge of the resource
distributions by virtue of their reinforcement histories.

Participants were 166 undergraduate students from Indiana University and
were run in eight sessions with about 21 participants in each session. Partici-
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pants worked at their own computers and were told that they were being asked
to participate in an experiment on group behavior. They were instructed to
try to pick up as many “food” resources as possible by moving their icon’s
position on top of food locations. Participants within a group co-existed in
a virtual environment consisting of an 80 × 80 grid of squares populated by
replenishing resource pools and other human-controlled agents. Participants
controlled their position within this world by moving up, down, left, and right
using the four arrow keys on their computers’ keyboards. Each participant was
represented by a yellow dot. In the “visible” condition, all of the other partic-
ipants’ locations were represented by blue dots, and available food resources
were represented by green dots. In the “invisible” condition, participants only
saw their own position on the screen and any food gathered by that partic-
ipant in the last two seconds. After this time interval, these consumed food
pieces disappeared.

The rate of distribution of food was based on the number of participants,
with one piece of food delivered every 4/N seconds, where N is the number
of participants. This yields an average of one food piece per participant per
four seconds. When a piece of food was delivered, it was assigned to a pool
probabilistically based upon the distribution rate. For example, for the 80/20
condition, the food would be delivered to the more plentiful pool 80% of the
time, and in the less plentiful pool 20% of the time. The location of the food
within the pool followed a Gaussian distribution. Every experiment was di-
vided into six 5-minute sessions. These six games consisted of all combinations
of the two levels of knowledge (visible versus invisible) and the three levels
of resource distribution (50/50, 65/35, 80/20). The locations of the resource
pools were different for each of the six sessions so that participants would not
have knowledge that carried over sessions. However, the distances between the
two resource pools were kept constant across the sessions.

As a preliminary analysis of the distribution of agents across resource
pools, Figure 1 shows the frequency with which each of the 80 × 80 grid
cells was visited by participants, broken down by the six experimental con-
ditions. The brightness of a cell increases proportionally with the number of
times the cell was visited. The few isolated bright specks can be attributed
to participants who decided not to move for extended periods of time. The
thick and thin circles show one standard deviation of the food distribution
for the more and less plentiful resources, respectively. An inspection of this
figure indicates that agents spend the majority of their time within relatively
small regions centered on the two resource pools. The concentration of agents
in pools’ centers is greater for visible than invisible conditions, and is greater
for the more plentiful pool. For the invisible conditions, there is substantial
scatter of travel outside of one standard deviation of the pools’ centers.

The dynamics of the distribution of agents to resources is shown in Figure
2, broken down by the six conditions. In this figure, the proportion of agents
in the two pools is plotted over time within a session. We plot the proportion
of agents in the pools, only counting agents that are within three standard
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Fig. 1. A frequency plot of participants’ visits to each grid square in Experiment 1.

deviations of one pool or the other. For the visible and invisible resources
conditions, an average of 0.7% and 16.7% of participants, respectively, were
excluded because they were not in either resource pool. This large difference
in exclusion rates is most likely due to the need for exploratory foraging in
the invisible resources condition.

The 50/50 graph is not particularly diagnostic. For the 65/35 graph, hor-
izontal lines indicate the proportions that would match the distribution of
food. Although fast adaptation takes place, the asymptotic distribution of
agents systematically undermatches the optimal probabilities. For example,
for the 65/35 distribution the 65% pool attracts an average of 60.6% of the
agents in the 50–300 second interval, a value that is significantly different
from 65%. Undermatching is similarly found for the 80/20 distribution. So, if
we were efficiency consultants, we would recommend that foragers in the less
productive pool should move to the more productive pool; the resources there
are being relatively underutilized.

A final analysis of interest explores the possibility of periodic fluctuations
in resource use. Informal experimental observations suggested the occurrence
of waves of overuse and underuse of pools. Participants seemed to heavily
congregate at a pool for a period of time, and then become frustrated with
the difficulty of collecting food in the pool (due to the large population in
the pool), precipitating a migration from this pool to the other pool. If a
relatively large subpopulation within a pool decides at roughly the same time
to migrate from one pool to another, then cyclic waves of population change
may emerge. A Fourier transformation of the time series data was applied to
test this. Fourier transformations translate a time-varying signal into a set
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Fig. 2. Changes in group sizes over the course of a session in Experiment 1.

of sinusoidal components. Each sinusoidal component is characterized by a
phase (where it crosses the Y -intercept), amplitude, and frequency. For our
purposes, the desired output is a frequency plot of the amount of power at
different frequencies. Large power at a particular frequency indicates a strong
periodic response. The frequency plots for Experiment 1 show significantly
greater power in the low frequency spectra for invisible than visible conditions.
The power in lower frequencies is particularly high for the invisible condition
with an 80/20 distribution. For all three invisible conditions, the peak power is
at approximately 0.02 cycles/second. This means that the agents tend to have
waves of relatively dense crowding at one pool that repeat about once every
50 seconds. This 50-second period includes both the time to migrate from the
first pool to the second pool and to return to the first pool. A pronounced
power peak at lower frequencies is absent for the visible condition. One ac-
count for the difference in the two visibility conditions is that in the visible
condition, each agent can see whether other agents are closer than themselves
to underexploited resource pools. The temptation to leave a dissatisfying pool
for a potentially more lucrative pool would be tempered by the awareness that
other agents are already heading away from the dissatisfying pool and toward
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the lucrative pool. However, in the invisible condition, agents may become
dissatisfied with a pool populated with many other agents, but as they leave
the pool they would not be aware that other agents are also leaving. Thus, the
ironic consequence of people’s shared desire to avoid crowds is the emergence
of migratory crowds! In a related irony, Rapoport et al. [55] report in this
volume that when individuals within a group each choose paths so as to have
a low-cost journey, the collective result can be average journey costs that are
high. The problem in both of their and our group experiments is that people
end up adopting similar courses of action despite their best intentions, and
inefficient congestion arises.

In a second experiment [24], we wished to decouple the visibility of agents
and food resources. Accordingly, we ran groups of participants in conditions
where food resources, but not fellow foragers, were visible, and vice versa.
This decoupling allows us to determine whether people use other people as
information sources about where food may be located, and if so, how this
information is used. An organism may be attracted toward patches occupied
by its conspecifics. An animal can use the prevalence of conspecifics in a
patch as information that the patch is highly productive. Consistent with this
hypothesis, field experiments on migratory birds have shown that the presence
of birds attracts other birds to a region [53]. Adding birds to a site makes it
more likely for still more birds to choose the site for nesting, which is why
duck hunters will put out decoys. Another familiar example is the tendency
of buzzards to use the presence of other buzzards as an indicator of possible
food sources, and therefore to fly to where there is a large group of buzzards.

On the other hand, an animal may avoid sites that already have a crowd of
conspecifics. Pulliam and Danielson’s ideal preemptive distribution hypothesis
[54] is that the first animals to arrive in an area will take the best territory,
with subsequent arrivals taking the best remaining territories. This pattern
has been observed with aphids. One of the central questions examined by
Experiment 2 is: are people more like buzzards or aphids with respect to the
influence of conspecifics on foraging strategies?

The results, shown in Figure 3, indicate both systematic undermatching
and overmatching in the distribution of human participants to resources over
time. Consistent overmatching was found when resources were visible but
other agents were invisible. When agents but not resources were visible, under-
matching was found. The results support the hypothesis of ideal preemptive
distribution rather than conspecific attraction. If participants were attracted
to a resource pool because of the presence of other foragers at the pool, then
overmatching would have been predicted with invisible resources and visible
agents. That is, in a situation where direct knowledge of resources was lacking
but the popularity of a pool could be used to estimate the pool’s productiv-
ity, the presence of a relatively large number of participants at the richer
pool would be expected to draw still more participants to the pool. In fact,
a modest level of undermatching was observed in this condition. By contrast,
according to the ideal preemptive distribution hypothesis, individuals at a site
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Fig. 3. Changes in group sizes over the course of a session in Experiment 2. The
thicker line represents the more productive resource pool.

preempt other individuals from occupying that site. This is consistent with
the undermatching observed when agents but not resources are visible, and
it is also consistent with the release from undermatching (i.e., overmatching)
observed when resources but not agents are visible. By this account, over-
matching is found because participants are attracted to the rich productive
pools, and are not dissuaded from approaching the pools by the presence of
other participants (who are invisible). As with Experiment 1, cyclic waves
of population migration were suggested by a Fourier analysis. Together, the
results suggest that our participants did not naturally make second-order in-
ferences that other participants would be influenced by the same factors (i.e.,
dearth of resources in a pool, or sudden onset of food resources) that influ-
enced themselves.

2.2 An Agent-Based Model of Collective Foraging

In developing EPICURE [56], an agent-based computational model, our in-
tention was to build as simple a model as possible, with only those strategies
included that the empirical results directly implicated. An interactive version
of the resulting model is available at [15]. We populated a world with agents
that probabilistically decided from moment to moment toward which spatial
grid location they would move. The likelihood that a particular location is
selected as the target destination is based on the location’s value relative to
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all other locations. Value is influenced by several factors. The first is the dis-
tance of location. The closer a location is, the more likely it is to be selected
as a target destination. Second, once a location has been selected as a target,
we increase its value so that it will tend to be selected as a target at the next
moment too. This is a way of incorporating inertia to target locations, and
we call this goal bias. Our empirical results showed that people tend to stick
around a resource for a while and then switch to the other pool if they know
where it is. We do not see people start to move toward a pool, get midway
into “no-man’s land,” and then head back to the pool they just left. However,
computational foragers did exactly this until we incorporated inertia for their
destinations.

There are different rule variants for the foragers in the visible and invisible
conditions. For the agents who can see all of the other agents and food, a
third factor is that the value of a location increases as the density of food in
its vicinity increases, and fourth, the location’s value decreases as the density
of other agents increases. The motivation for this is that if other agents are
present in a region, then there will be more competition to get the food and
hence the region is less attractive. Neither of these sources of information
is available in the invisible condition. In the invisible condition, agents must
gradually accumulate a personal history of where they have found food. Every
time food is found in a location, the location’s value increases, and this increase
diffuses to the nearby locations. Conversely, if a cell is visited but contained
no food, then its value and its neighbors’ values decrease.

EPICURE is able to account for the empirically observed pattern of over-
matching and undermatching for the four visibility conditions in Experiments
1 and 2. For the visible condition of Experiment 1, EPICURE’s agents rapidly
converge on a distribution that approximates the food distributions but con-
sistently undermatches the food distributions (as shown in Figure 3). For the
invisible condition, we also find that the agents can learn where the food clus-
ters are given a bit more time, but that there is also asymptotic stable under-
matching over the entire experiment. Finding undermatching was surprising
to us because we had anticipated that we would only get undermatching if we
included an explicit bias in our agents to assume that all discovered resource
patches had approximately equal frequencies of outputs. In fact, our agent-
based system spontaneously produced undermatching as our human subjects
did, even though it makes none of the typical assumptions posited by the
biology literature to explain undermatching [36]. It does not need a bias to
spend equal time at different resource pools, unequal competitive abilities
among foragers, or foraging interference. Why does EPICURE predict under-
matching? The critical notion is spatial turfs. A single agent can efficiently
patrol a compact region of about 10 squares despite large differences in food
productivity. Although the 80% pool has four times the productivity of the
20% pool, they both have the same spatial extent and variance, and so can
support agents in numbers that are more similar than predicted by the pools’
productivities.
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Fig. 4. EPICURE matching results for the visible (top) and invisible (bottom)
80/20 food distribution conditions with different uniform variance pool sizes. In
each condition, the first number at the top of the graphs indicates the radius of the
80% pool (square regions were used for simplicity), and the second number indicates
the radius of the 20% pool. For example, 16 versus 8 indicates that the 80% pool
covers a total area of (16× 2)× (16× 2) = 1024 cells whereas the 20% pool covers
a total area of (8× 2)× (8× 2) = 256 cells.

A corollary of this account of overmatching is that the matching of agents
to resources should depend heavily on the variances of the pools. EPICURE’s
predictions are shown in Figure 4. When a resource pool occupies a larger
area, then all else being equal it will attract more EPICUREans. When the
pool variances are identical (8 versus 8), the agents slightly undermatch the
resources. When the 80% pool has half the variance of the 20% pool (8 versus
16), dramatic undermatching occurs because it takes more agents in the 20%
pool to cover the much larger area. When the variances are reversed (16
versus 8), the rarely observed phenomenon of overmatching occurs, and the
explanation lies in the fact that the densities of the pools are equal, but the
coverage times are unequal because the food rate is low. Agents in the 20%
pool have less area to cover and fewer pieces of available food, so the average
pick-up time remains relatively low and food does not last long enough to
attract agents, as it does in the 80% pool. Finally, in the 16 versus 16 condition,
nearly perfect matching is observed. EPICURE’s prediction, comparing the 8
versus 8 to the 16 versus 16 conditions, is that as the spatial extent of two
pools increases, better matching should be found. Baum and Kraft [4] found
similar results with pigeons competitively foraging for food from two bowls
(small resource pools) or troughs (large).
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EPICURE also correctly predicts our results from the mixed visibility
conditions of Experiment 2. When agents and resources are both visible, there
is a tendency for participants not to go to the more prolific pools because of
the restraining effect of high agent density. However, when only the resources
are visible, agents cannot see the high agent density of the prolific resource,
and hence the empirically observed overmatching is also found in the model.
EPICURE also spontaneously produces population waves revealed by Fourier
analysis, and as in our empirical data, the strongest frequency response was
at about 0.02 cycles/second. The model correctly predicts an average of about
2–3 pool switches across a five-minute experiment. There are several results in
the literature that are also predicted by the model. Greater undermatching is
predicted and empirically found as the number of agents increases [19]. As the
number of agents increases, or the resource area gets more constricted [4], then
the number of unoccupied turfs decreases and the resources are well covered
by agents staking out their small turfs. The spatial coverage of the agents
becomes more important than the resource pool productivity in determining
the distribution of agents.

A final, somewhat counterintuitive prediction of EPICURE is that increas-
ing the distance between two resource pools, and hence travel cost, should
decrease, not increase, undermatching. For example, in one set of simulations,
we expanded the gridworld to 120 × 120 cells, and compared simulations with
pool centers at (20, 20) and (100, 100) to simulations with pool centers at (40,
40) and (80, 80). With visible agents, the increased distance between pools
led to nearly perfect matching. These results agree with the empirical pigeon
foraging results found by Baum and Kraft [4]. As the distance between pools
increased, the pigeons more closely matched the ideal free distribution model,
and they switched pools significantly fewer times. Milinski [46] also found that
stickleback fish switch between pools significantly less often as the distance
between pools increases. Likewise, in our simulation, the far-apart pools led
to significantly fewer average switches than the closer pools. The dynamics of
the constrained visible model offers a simple explanation for both the switch-
ing and matching results. As the pools become more separated, it is much less
likely that an agent will probabilistically choose to switch pools, because the
other pool’s resources are so far away. Furthermore, if the agent does decide to
switch, the longer distance means there are more opportunities for the agent
to change its decision and choose a food pellet in the previous pool, although
the goal bias tempers this change in decision. The decreased switching, in
turn, promotes better matching because the new pool must appear to be con-
sistently better in order for the agent to complete the journey. The burden of
switching is higher, so agents are more likely to switch only when there is a
true advantage. An additional consideration is that as travel costs increase,
by further separating pools, undermatching increases because it becomes less
likely that an agent will sample from both pools and if the pools are equally
large then they have approximately equal chances to originally capture an
agent.
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It might be argued that EPICURE can be fit to experimental results,
but does not genuinely predict outcomes from foraging experiments. In EPI-
CURE’s defense, many of the model’s behaviors were observed before we knew
of their empirical support. These predictions are invariant with changes to pa-
rameters within reasonable ranges. This includes its surprising prediction of
decreased undermatching with increased travel costs, and increased under-
matching with smaller resource patches. However, for the future record, we
also offer further genuine predictions of EPICURE for which we do not cur-
rently know of supporting evidence. First, EPICURE predicts greater dispar-
ity of wealth (resources retrieved) among agents in the invisible than visible
resources condition. If resources are invisible, then some fortunate agents can
effectively monopolize a resource pool without other agents getting a chance to
sample from it. Second, EPICURE predicts greater disparity of wealth among
agents in the more prolific, compared to less prolific, pool. Third, EPICURE
predicts strong reliance on social information with an environment containing
a few large resource pools that stochastically appear and deplete in different
regions of the environment, but predicts foragers to rely on privately obtained
information if those same resource pools are small and quickly depleted. We
are currently conducting experiments to test these predictions.

In summary, we believe that EPICURE provides an elegant synthesis of
several results from the literature on human and animal foraging. Our empiri-
cal results highlight the importance of knowledge on group-level behavior. We
find three empirical inefficiencies in our groups’ behavior: (1) undermatching
in the sense that there were too many participants in the less plentiful resource
and too few participants in the more plentiful resource, (2) participants were
more scattered than were the food resources, and (3) systematic cycles of pop-
ulation change are apparent whereby the migration of people from one pool
to another is roughly synchronized. All three of these inefficiencies were more
pronounced for invisible than visible conditions. Knowledge of food distribu-
tions allows an agent to more effectively match those distributions, whereas
knowledge of other agents allows an agent to more effectively decouple their
responses from others. The importance of agent and food information led us
to feature these in our computational model of foraging. One of the best ways
to evaluate a complex adaptive system model is to see whether behaviors arise
that are not explicitly forced by the rules: are we getting out more than we
knew we were putting in the model. By this measure, the model does a good
job of explaining collective foraging behavior. EPICURE shows high-level be-
haviors such as undermatching and population cycles even though it was not
built with the intention of creating them, and the model also predicts the
specific dependencies of these high-level behaviors on population size, and the
location, variance, and the productivity of resources.
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3 Propagation of Innovations in a Group

The previous experiments and computational model described a situation with
competitive foraging for spatial resources. We now turn our attention to a
situation with collective foraging for abstract resources. In the concrete spatial
foraging task, resources consumed by one agent could not be consumed by
others. However, in our abstract search scenario resources are less tangible
and thus those used by one agent can still be used by another. This is akin
to searching for the solution to a math problem which, once found, can be
imitated with no loss to the discoverer. Nevertheless, as with the foraging
task, agents can still benefit from knowing where other agents are searching.
Furthermore, similar to the foraging task, the abstract search situation is not
genuinely cooperative because each agent is still trying to maximize its own,
not the group’s performance.

3.1 Group Experiments on Innovation Propagation

Humans are uniquely adept at adopting each others’ innovations. Although
imitation is commonly thought to be the last resort for dull and dim-witted in-
dividuals, cases of true imitation are rare among nonhuman animals [5], requir-
ing complex cognitive processes of perception, analogical reasoning, and action
preparation. This capacity for imitation has been termed “no-trial learning”
by Bandura [3], who stressed that, by imitating one another, people perform
behaviors that they would not have otherwise considered. When combined
with variation and adaptation based on reinforcement, imitation is one of the
most powerful methods for quick and effective learning. Cultural identity is
largely due to the dissemination of concepts, beliefs, and artifacts across peo-
ple. The tendency for humans to imitate is so ubiquitous that Meltzoff [44]
has even suggested that humans be called “Homo imitans.”

In social psychology, there has been a long and robust literature on confor-
mity in groups [9,59]. The usual finding is that people conform to majorities
in groups. To some degree, conformity is found because people desire to ob-
tain social approval from others. For example, sometimes when people give
their answers privately, they are less likely to conform to the group’s opinion
than when responding publicly [11]. However, at other times, the conformity
runs deeper than this, and people continue to conform to the group’s opinion
even privately [59]. In our experiments and modeling, we are interested in the
use of information provided by others even when social approval motivations
are minimized because the group members never meet one another and are
anonymous.

Conformity to others’ ideas has been a major field of research not only
in social psychology, but also in economics, political science, and sociology.
It is common in models of collective action to make an individual’s decision
to participate based upon his expectations of how many other people will
participate [8]. A common outcome of a collective, “I’ll do it if you do it,”
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mentality, is for “tipping points” to arise in which adding a couple more
participants to an action leads to a positive feedback cycle in which still more
participants sign on, leading to an exponential increase in participation for
a time [20]. This behavior is a sensible policy both because the likelihood of
success of an innovation depends upon its public adoption rate [7] and because
other people may have privileged information unavailable to the individual
making a choice. The potential cost of this bandwagon behavior is wasted
time, money, and effort in adopting new innovations [57,60].

Our studies explore the diffusion of innovative ideas among a group of par-
ticipants, each of whom is individually trying to find the best solution that
she can to a search problem. The work fills an important gap in research.
There are several excellent computational models for how agents in a popu-
lation exchange information [2,35,48]. There is also excellent work in social
psychology on how individuals conform or use information provided by others
[18]. Fieldwork also explores actual small groups of people engaged in cooper-
ative problem solving [1]. However, there is very little work with laboratory-
controlled conditions that explores the dynamics of a group of participants
solving problems as they exchange information. One related study is Latané
and L’Herrou’s [40] exploration of participants’ sending e-mail messages to
each other (see also [39]), as they tried to predict which of two options their
group would select. Over the course of message exchanges, neighboring partic-
ipants in the network tended to adopt similar choices (consolidation) but there
was also continued diversity of choices across the entire network. In contrast
to this work, our research predominantly focuses on situations where partic-
ipants are trying to find good solutions to a problem rather than trying to
conform to their neighbors. For example, farmers may discuss the benefits of
various crop rotation techniques with their neighbors, and may be convinced
to try a new one by a neighbor’s success, but there is no reward to conforming
to a neighbor’s behavior in itself.

In creating a paradigm for studying information dissemination, our desider-
ata were: (1) a problem to solve with answers that vary continuously on a
quantitative measure of quality, (2) a problem search space that is sufficiently
large that no individual can cover it all in a reasonable amount of time, and
(3) simple communications between participants that are amenable to compu-
tational modeling. We settled on a minimal search task in which participants
guess numbers between 0–100 and the computer reveals to them how many
points were obtained from the guess by consulting a hidden fitness function
[43]). In addition, random noise was added to the points earned, so that re-
peated sampling was necessary to accurately determine the underlying func-
tion relating guesses to scores. Over 15 rounds of guesses, participants tried
to maximize their earned points. Importantly, participants get feedback not
only on how well their own guess fared, but also on their neighbors’ guesses.
In this manner, participants can choose to imitate high-scoring guesses from
their neighbors. We experimentally manipulated the network topology that
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determines who counts as neighbors, as well as the fitness function that con-
verts guesses to earned points.

Fig. 5. Examples of the different network structures for groups of ten participants.
Circles represent participants and lines indicate communication channels.

We created neighborhoods of participants according to random, regular
lattice, fully connected, and small-world graphs. Examples of the graph topolo-
gies for groups of ten participants are shown in Figure 5. In the random
graph, connections are randomly created under the constraint that the result-
ing graph is connected: there is a path from every individual to every other
individual. Random graphs have the property that individuals tend to be
connected to other individuals via paths that do not require passing through
many other individuals. This property has been popularized as the notion of
“six degrees of separation” connecting any two people in the world, and has
been experimentally supported [45]. More formally, the average path length
connecting two randomly selected nodes in a random graph is ln(N)/ ln(K)
where N is the number of nodes and K is the average number of neighbors
connected to each node. The regular lattice can be used to represent a group
with an inherent spatial ordering such that people are connected to each other
if and only if they are close to each other. The regular lattice also captures
the notion of social “cliques” in that if there is no short path from A to Z,
then there will be no direct connection from any of A’s neighbors to any of
Z’s neighbors. In regular lattices, the average path required to connect two
individuals requires going through N/2K other individuals. Thus, the paths
connecting people are much longer, on average, for lattice than random graphs.
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Random graphs have short paths, but unfortunately (from the perspective
of modeling social phenomena) do not contain cliques. Lattices show cliques,
but do not have short path lengths. Recently, considerable interest has been
generated in networks that have both desirable properties, so-called “small-
world networks.” These networks can be formed by starting with a lattice and
randomly rewiring (or adding new connections, in the case of our experiments
and Figure 5) a small number of connections [64]. The result is a graph which
still has cliques because nodes that are connected to the same node tend
to be spatially close themselves, yet also have a short average path length.
From an information processing perspective, these are attractive networks
because the spatial structure of the networks allows information search to
proceed systematically, and the short-cut paths allow the search to proceed
quickly [37]. Notice, in Figure 5, that all three of the described networks have
a total of 12 connections between 10 participants. Thus, if there is a difference
in information dissemination in these networks, then it must be due to the
topology, not density, of the connections. A fourth network, a fully connected
graph, allows every participant to see the guesses and outcomes of every other
participant.

We compared two hidden functions for converting guessed numbers to
points. The unimodal function has a single best solution that can always be
eventually found with a hill-climbing method (see Figure 6). The trimodal
function increased the difficulty of the search by introducing local maxima. A
local maximum is a solution that is better than all of its immediate neighbor-
ing solutions, yet is not the best solution possible. Thus, a simple hill-climbing
method might not find the best possible solution.

(a) Unimodal fitness function (b) Multimodal fitness function

Fig. 6. Examples of the unimodal and multimodal fitness functions that convert
guesses into obtained points.
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Twelve groups of Indiana University undergraduate students ranging in
size from 7–18 people with a median of 14 people per group participated for
partial course credit, for a total of 153 participants. Each group participated
in eight experiments that consisted of every combination of the four network
types (Figure 5) and two fitness functions (Figure 6). Participants were told
to try to maximize their total number of points acquired over 15 rounds of
number guessing, and that the same guess would be worth about the same
number of points from round to round, but that a certain amount of random-
ness was added to the earned points. Participants were also told that they
would see the guesses and points earned by some of the other participants,
and that these others would also see the participants’ guesses and earnings.

The results from this experiment are shown in Figure 7, expressed in terms
of the percentage of participants within one-half standard deviation of the
global maximum for a fitness function. Over the 15 rounds, increasingly many
participants find the global maximum. For the unimodal function, the fully
connected network finds the global maximum most quickly, and the advantage
of the fully connected network over the other three networks is particularly
striking for Rounds 2–4. Around Round 5, the small-world network catches
up to the performance level of the fully connected network, and for the rest
of the rounds, these two network types continue to outperform the other two
networks. This pattern of results is readily explainable in terms of the propen-
sity of a network to disseminate innovations quickly. Innovations disseminate
most quickly in the full network because every individual is informationally
connected to every other individual.

For the multimodal payout function, the small-world network performs
better than the fully connected network for the first six rounds. One account
for its superiority over the full network is that the small-world network is able
to thoroughly search the problem space. The fully connected groups frequently
get stuck in local maximum because the groups prematurely converge on a
good, but not great, solution. The small-world structure is an effective com-
promise between fully exploring a search space and also quickly disseminating
good solutions once they are found. Much as how our foraging simulations
counterintuitively revealed a more optimal distribution of agents to resources
when the environment limited the ability of the agents to easily explore each
site, the most surprising aspect of these results is that the truism of “the
more information, the better” is not supported. Giving each participant all of
the results from all of the agents does not lead to the best group solution for
the multimodal problem; the problem with this policy is that with the fully
connected network, everybody ends up knowing the same information. Par-
ticipants thereby become too like-minded, acting as a single explorer, rather
than a federation of independent explorers.

The general point from this first experiment is that before one decides
how to connect a group, one should know about the nature of the problem
the group needs to solve. A candidate generalization is that the more ex-
ploration a group needs to do, the more clustered and locally connected the
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(a) Unimodal payout function

(b) Multimodal payout function

Fig. 7. Percentage of participants within one standard deviation of the global max-
imum on each round for the unimodal and multimodal payout functions.
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network should be. Conversely, the more quickly a group needs to exploit
emerging solutions, the more globally connected individuals should be. Prob-
lem spaces that require considerable exploration to find the global maximum
should benefit from networks that have relatively well isolated neighborhoods
that can explore different regions of a problem space. To test this hypothe-
sis, in a separate experiment we also tested the more difficult fitness function
shown in Figure 8 that we call the needle function. This function features
one very broad local maximum, and one hard-to-find global maximum. We
tested 12 groups of participants in needle functions like this, with each group
connected in the same four network topologies we used before. For this func-
tion, Figure 9 shows that the lattice network performed better than the other
three network types, starting by Round 7 if not earlier. The lattice network
fosters the most exploration because of its spatially segregated network neigh-
borhoods. Exploration of the problem space is exactly what is needed for the
needle function because of its hard-to-find global maximum.

Fig. 8. An example of the “needle” payout function. This function features one
broad local maximum that is easy to find and one narrow global maximum that is
difficult to find.

The three payout functions are ordered by the demands they place on
broad exploration of a problem space. The benefit for exploration increases
going from the unimodal to the multimodal to the needle function. In paral-
lel, the network structures are ordered by their preservation of local cliques
of nodes. Cliquishness increases going from full to small-world to lattice net-
works. These two progressions are coordinated, with the full network perform-
ing best with the unimodal function, the small-world network performing best
with the multimodal function, and the lattice performing best with the needle
function. In contrast to arguments for a general informational advantage of
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Fig. 9. Performance for the four network structures with the needle payout function.
For this function, the lattice network performs better than the other three network
types.

small-world networks [64], we find that what network is best depends on the
kind of problem a group must solve (see also [41]). As broader exploration is
needed to discover good solutions, increasingly cliquish networks are desirable.

3.2 A Computational Model of Innovation Propagation

We have developed an agent-based computational model of our experiments
based on the premise that members of a group can choose to explore a problem
space on their own or take advantage of the solutions found by others. In the
model, called SSEC (for self-, social-, and exploration-based choices), every
agent on every round probabilistically chooses among three strategies: using
their own guess on the last round, using their neighbors’ best guess on the
last round, and randomly exploring. Each agent randomly chooses among
these strategies, with the likelihood of each strategy based on its intrinsic
bias and also its observed success. Guesses also include normally distributed
randomness to avoid perfect imitation. The model, thus, can be expressed as

p(Cx) =
BxSx∑
n BnSn

, (1)

where p(Cx) is the probability of using Strategy x, Bx is the bias associ-
ated with the strategy, and Sx is the score obtained from the strategy. The
participant’s guess is then Gx + N(µ = 1, σ = 1), including normally dis-
tributed randomness, with Gx being the guess associated with Strategy x.
When the random exploration strategy is selected, a uniform distribution is
used to select the next guess. This model is motivated by the particle swarm
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algorithm [35]. However, unlike the swarm algorithm, the SSEC model allows
sudden jumps in guesses rather than smoothly changing patterns of oscilla-
tions around promising solutions. The experimental results showed that par-
ticipants frequently jumped from one guess to a completely different guess, a
behavior that the original particle swarm algorithm does not accommodate.

The simplest version of this model with mostly default parameter values
for the biases was able to accommodate some, if not all, of the trends in
the results. In particular, we tested a version of the model in which B1 (the
bias for using one’s own previous guess) is 1, B2 (the bias for using one’s
neighbor’s best scoring guess) is 1, and B3 (the bias for randomly exploring)
is 0.1. This is essentially a one-parameter control of biases because B1 and
B2 were constrained to be equal, and only the relative, not absolute, value
of B3 matters given the choice model used to determine strategy choice. In
addition, the value of σ that determines the mutation/drift rate for guesses
was set to 3, and noise with a variance of 30 and a mean of 0 was added to
the fitness function’s output, just as it was to experiment scores. Each of the
four network types was run 1000 times with each of the three fitness functions
for 15 rounds of guessing and 15 agents per group. This model showed the
best performance with the full network with the unimodal function, the best
performance with the small-world network with the multimodal function, and
a two-way tie for the best final performance between the lattice and small-
world networks for the needle function. This pattern is the same as empirically
observed, except for the needle function, where we found the lattice network
performing better than all other network types.

Given the promising results of this original set of simulations, we para-
metrically manipulated the network connectivity to continuously shift from
a regular lattice with only local connectivity to a fully connected network
in which every agent is directly connected to every other agent. This was
achieved by connecting 15 agents via a lattice, and then adding a number
of additional random connections between agents. As the number of random
connections increases, the network initially transforms from a random net-
work to a small-world network. Then, as the connectivity further increases,
the network transforms from a small-world network to a fully connected net-
work. If more information communicated in a network always increases group
performance, then we expect better performance (shown by brightness in Fig-
ures 10–12) as connectivity increases.

Independently, we manipulated the relative weight given to information
obtained from oneself compared to others. Keeping B3 constant at 0.1, we
varied B1 from 0 to 1 and set B2 equal to (1 − B1). Thus, we varied the
degree to which each agent’s guesses were based on his own previous guess
compared to others’ guesses. In Figures 10–12, as we go from left to right,
we go from “sheepish” agents that base their guesses completely on others’
guesses (and an occasional random guess) to “mavericks” that always go their
own way without any influence of others.
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Fig. 10. Group performance for the unimodal function. This graph shows the inter-
action between the bias for self- versus other-obtained information and the number
of random links added to a regular lattice. Group performance is measured by the
percentage of individuals within one standard deviation of the global maximum of
the fitness function. The brightness of each square indicates the group’s performance
after 15 rounds of number guessing. For this simple problem space, group perfor-
mance increases monotonically with increased reliance on others’ information and
network connectivity.

Fig. 11. Group performance for the multimodal function. The best performance
is found for a combination of using self- and other-obtained information, and for
intermediate levels of network connectivity.



300 Robert L. Goldstone et al.

Fig. 12. Group performance for the needle function. This function benefits from
even greater reliance on self-obtained information and decreased global network
connectivity.

Figures 10–12 show that the influences of connectivity and agent inde-
pendence are not constant, but rather depend on the shape of the problem
space. For the easy-to-solve unimodal problem, Figure 10 shows that group
performance increases monotonically with both increased reliance on others’
information and increased connectivity. Both trends can be explained by the
fast propagation of innovations obtained when agents follow their best peers,
and have many peers to follow. For single-peaked problems, there are no local
maxima and so no concern with hasty collective convergence on suboptimal
solutions.

For the multimodal function (Figure 11), optimal group performance in-
volves intermediate levels of both connectivity and self-reliance. These two
factors trade off with each other such that increases in connectivity can be
offset by decreases in conformity. Networks that have only local connectivity
and self-reliant individuals perform relatively poorly because good solutions
are inefficiently spread. Conversely, networks that have global connectivity and
conformist individuals also perform poorly because the group frequently con-
verges on local rather than global maxima. Good group performance is found
when a group can both search a problem space for good solutions, and yet
spread those solutions quickly once they are found. This is achieved when con-
formist individuals are combined with a network that limits connectivity, or
when self-reliant individuals are combined with more broadly connected net-
works. If one is able to engineer a social network, then one’s target network
should depend both on the problem, and “personalities” (mavericks versus
sheep) of the nodes in the network.
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For the trickier needle function (Figure 12), the best performing networks
are pushed even further in the direction of increasing self-reliance and de-
creasing connectivity. Consistent with our empirical results, the needle func-
tion requires more exploration, and both limiting connectivity and increasing
self-reliance promote independent exploration of group members. As with the
multimodal function, there is a tradeoff between network connectivity and
individual self-reliance.

A major conclusion from both the experiments and modeling is that prop-
agating more information is not always good for the group. Lazer and Fried-
man’s computational model [41] converges on the same maxim: full access to
what everybody else in a group is doing can lead human and computational
agents to prematurely converge on suboptimal local maxima. Networks that
preserve spatial neighborhoods promote exploration, and this can explain why
the full network is the best network for the unimodal function, the small world
network and its intermediate level of connectivity does best with the trimodal
function, and the lattice function with no long-range connections does best
with the difficult needle function.

Although more information is not always better as far as the group goes,
it is always in the best interest of individuals to use all of the information
at their disposal. Accordingly, our innovation propagation paradigm provides
an unexpected example of a social dilemma [25,49]. Individuals, looking out
for their own self-interest, will seek out as much information from others as
possible, but this can inhibit the group as a whole from widely exploring a
search space. Thus, obtaining information from as many peers as possible is
noncooperative behavior even though it does make links between individu-
als. Searching a problem space on one’s own is cooperative in the sense of
allowing the group as a whole to collect the most points possible, by avoiding
local maxima. Our simulations show that every individual agent is best off
linking to as many other people as possible. Agents with relatively many links
outperform those with relatively few links. However, if every agent links max-
imally to every other agent, then the entire group does not perform well due
to premature convergence on good, but not optimal, solutions. Sensitivity to
this conflict between individual and group interests may help in the design of
adaptive social networks. Designing for the greater common good may some-
times entail placing limits on individuals’ ability to connect with each other.
Problems with difficult, hard to find solutions often drive people to look to
others for hints and clues, but these are exactly the kinds of problems for
which limited local connectivity is advantageous.

This analysis of the conflict between the good of the individual and group
becomes particularly relevant when we turn to situations where people can
choose their connectivity, rather than having it imposed. Pursuing experimen-
tal paradigms in which people can create their own social networks would be
valuable as connecting with both the mathematical literature on the evolu-
tion of networks [13] and the social science literature on coalition formation
[34]. In many naturally occurring groups, people have some choice in who
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they will share information with, and what information they will reveal. From
our perspective on human groups as complex systems, one of the interesting
issues will be to study the global efficiency of information transmission in
self-organized networks, and how incentives to individuals can be structured
so that globally advantageous networks emerge.

4 Towards Unifying Collective Search Paradigms

We have presented two cases of collective search, in concrete and abstract
problem spaces. Although collective resource harvesting in space seems, at
first, to have little to do with how innovations are propagated in a community,
the continuity and parallels between them increasingly impress us. To see
these connections, it is useful to consider some salient differences between
the paradigms in terms of concreteness, competition, and the importance of
information sharing.

In terms of concreteness, the physical space of the foraging environment
clearly presents search constraints missing in the number-guessing scenario.
Foragers must pass through intermediate locations, and accrue travel costs
when trekking over spaces between resource pools. In the number-guessing
experiments, participants can hop from any number to any other number.
However, in both scenarios, the resources themselves are “clumpy,” distributed
in compact physical spaces for the foragers, or smooth fitness functions in the
innovation propagation experiments. Furthermore, the physical constraints in
the forager environment can easily be relaxed. The simple methodological
change of allowing participants to point and click to destinations and im-
mediately transport there eliminates the constraints of space. Alternatively,
a version of the number-guessing game in which participants can only al-
ter their guesses slowly serves to implement a one-dimensional space. These
modifications make a strong case for unifying these paradigms. Travel costs,
metric spaces, and ordered dimensions can be either present or absent in both
paradigms, for both participants’ movements and the resource distributions.

A second difference between the paradigms concerns competitiveness. In
the foraging experiments, a food token that is picked up by one participant is
no longer available for others. Resource collection is competitive. By contrast,
in the number-guessing experiment, any number of participants can guess the
same number without penalty. Resources are not consumed as they are sam-
pled. This difference in competition yielded different results. For our foragers,
the presence of people at a resource pool often dissuaded others from harvest-
ing the pool, but for our number-guessers, there was no evidence for being
deterred by crowds. However, it is easy to imagine versions of foraging with-
out competition. For example, when “foraging” for good stock investments,
stock prices do not fall, but rather typically increase, as more individuals buy a
stock. Alternatively, competition can be introduced into the number-guessing
experiment by dividing the points earned by a numeric guess by the number
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of individuals making similar guesses. In fact, exactly this tactic of “resource
sharing” has been proposed by genetic algorithm researchers in order to in-
crease the diversity of a population of evolved solutions to multidimensional
problems [22]. The competitiveness of resource harvesting is an important
factor in determining the diversity of solutions and the advantage of travel-
ing with and apart from crowds, but it is also a factor that may or may not
accompany either scenario.

Finally, the paradigms seem to differ in the importance of information
sharing. For the number-guessing experiment, participants who do not ever
copy others are at a distinct disadvantage. Sharing information about solution
quality was sufficiently important that we explicitly manipulated the network
configuration that determined the pathways for this sharing. Network con-
nectivity was not manipulated in the foraging experiments, and a forager can
perform well without ever following another forager’s lead. However, as we
imagine expanding the forager world, decreasing the visibility of resources,
and increasing the visibility of fellow foragers, the importance of information
sharing increases. Even in our relatively small foraging environments, peo-
ple often used other people as information scouts when people but not food
resources were visible.

All of these factors affect real-world search tasks. The results of our em-
pirical foraging task and subsequent model can be extended towards concrete
foraging tasks in the real world, such as chimpanzees foraging for fruit [29], the
migratory patterns of early hominid foragers, and guppies foraging for mates
[14]. Furthermore, many of the same principles also apply to abstract foraging
tasks, such as human information foraging [52], information foraging on the
World Wide Web, and Internet dating sites. Meanwhile, the results from our
number-guessing scenario indicate that the social networking structure can
determine the dynamics of collective search tasks.

Together, these studies may lead to a greater understanding of individ-
uals’ usage of personal information versus public information, and how this
usage is contingent on the social context of a task. For example, undergrad-
uate students face a dilemma when choosing courses for the semester. They
certainly want to take courses that involve their own interests and satisfy
requirements, but they also want to make use of social information that in-
dicates which classes are easy, which professors are the best, and so on. The
social information changes as students begin relying on Web sites’ ratings
of professors and courses, rather than simply the students’ local networks
of friends and acquaintances. The students’ local networks are presumably a
more reliable source of knowledge, but the Web sites offer a greater breadth
and accumulation of knowledge. This shift in public information usage can
have real consequences in terms of the enrollment in particular courses and
the subsequent course offerings.

Similar issues of acquiring and weighting information occur in the pur-
chasing of consumer goods. Individuals choose cars and cellphones according
to features and style, but they also care about relevant information from their
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peers [33], whether that information concerns the popularity of a product or
simply the product’s reliability. Sometimes the criteria of the search space
are relatively well defined, such as a car’s mechanical reliability or the av-
erage number of dropped calls on a cellphone, but the criteria often include
intangibles, such as the aesthetics of a cellphone’s sleek style. Furthermore,
we generally receive this product information from a variety of social net-
works, including our real-world social network, Web social networks such as
MySpace, and search engines that may approximate full connectivity via their
abundance of links.

Clearly these search situations can become increasingly complex as in-
dividuals weigh their own personal information and the public information
acquired from various sources, but our empirical paradigm provides a rich
environment for both isolating and combining these factors. In our current
work, we are exploring several tasks to better elucidate these real-world sce-
narios. In one experiment, we are examining the effects of a social network on
an individual’s rating of musical pieces. Unlike the number-guessing scenario,
there is no correct optimal solution. In a second experiment, we are studying
a task very similar to the number-guessing task, except it involves guessing
two-dimensional pictures by filling in squares and receiving both individual
feedback and feedback regarding network neighbors’ guesses. This task in-
volves a more difficult search space, and as a result, we expect an increased
reliance on social information. Finally, we are also conducting an experiment
that examines the relative participation in producer and consumer roles in a
social network. In this experiment, we are trying to gauge collective search
performance when each experiment round involves individuals’ choosing to
either search for their own solutions or consume from their neighbors’ current
guesses. We expect to find population oscillations as individuals alternate be-
tween scavenging group information and being forced to search for their own
information, but we may also find that a mix of strategies is crucial for good
group performance.

Ultimately, we use the results from these studies to explore increasingly
rich collective search tasks. By manipulating concreteness, competition, the
importance of information sharing, and the inclusion of multiple sources of
personal and public information, we can create a family of experiments uni-
fied by general principles of collective search. In the current chapter, we have
described several key principles gleaned from our initial collective search ex-
periments. These principles, exemplified in both of our paradigms, include:
(1) a tradeoff between exploration and exploitation, (2) a compromise be-
tween individuals using self- versus other-obtained information, and (3) the
emergence of group-level resource use patterns that result from individual
interests but are not always favorable to these interests. Unfavorable mani-
festations of these principles include inefficient population waves, bandwagon
effects, mismatches between agent and resource distributions, disadvantages
for highly connected networks, and premature convergence of populations on
local maxima.
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Despite these difficulties, collective search continues to be an immensely
powerful case of distributed cognition [28] for the simple reason that individual
search often fails to provide a solution in a limited time. The shopping Web site
Amazon has a feature that tracks one’s searches and uses them as information
to provide recommendations to others with similar searches. By including this
additional information, the Web site transforms the individual’s search for
good products into an instance of collective search, with the same benefits and
foibles as described in this chapter. Similarly, the search for missing children
or wanted criminals relies on a group of individuals searching and sharing
information about their search. If the features of the search are known (e.g.,
how far the criminal could have traveled, or whether the search problem is
easy or difficult), the communications between searchers can be set up to
benefit the group and avoid unfavorable outcomes. In light of the peril and
promise, it behooves cognitive scientists of all stripes to work together toward
solving the problem of understanding and improving collective search.
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