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Abstract

The resurgence of interest in collective behavior is in large part due to tools recently made avail-

able for conducting laboratory experiments on groups, statistical methods for analyzing large data

sets reflecting social interactions, the rapid growth of a diverse variety of online self-organized col-

lectives, and computational modeling methods for understanding both universal and scenario-specific

social patterns. We consider case studies of collective behavior along four attributes: the primary

motivation of individuals within the group, kinds of interactions among individuals, typical dynamics

that result from these interactions, and characteristic outcomes at the group level. With this frame-

work, we compare the collective patterns of noninteracting decision makers, bee swarms, groups

forming paths in physical and abstract spaces, sports teams, cooperation and competition for resource

usage, and the spread and extension of innovations in an online community. Some critical issues sur-

rounding collective behavior are then reviewed, including the questions of ‘‘Does group behavior

always reduce to individual behavior?’’ ‘‘Is ‘group cognition’ possible?’’ and ‘‘What is the value of

formal modeling for understanding group behavior?’’
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1. Introduction

Consider the arbitrarily selected concept of ‘‘Spam filter.’’ Like most of our concepts,

it is very much the product of our culture. Despite its seemingly mundane nature, it is the

culmination of a rich and complex series of conceptual bootstrappings. To understand this

concept requires understanding computers, advertisement, money, attention, e-mail, value,

the Internet, and the nature of canned meats. Each of these concepts, in turn, requires

understanding many other concepts. No individual, no matter how smart or motivated,
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would be able to come up with this concept if born and raised in a substantially different

culture, such as that of Easter Island circa 1850. An individual is still less likely to come up

with this concept in complete isolation from others.

Yet most of the methods of cognitive science tacitly adopt the assumption of individual

people as the unit of cognition. Researchers studying concept learning, perception, memory,

attention, expertise, neuroscience, and consciousness typically isolate their subjects in

cubicles and expose them to materials that they must categorize, recognize, organize,

remember, or select. To be fair, there are certainly cognitive scientists studying language,

group behavior, and community organization. However, there is still no general recognition

of the ubiquitous influence of the collective on the individual’s cognition. Structured

cognitive behavior can be described at multiple levels, and our thoughts both depend upon

and determine the social structures that contain us as elements.

The study of collective behavior is timely for several reasons. First, as many of the

articles in this issue attest,1 there have been recent and important developments in the for-

mal modeling of collective behavior. These models have played a valuable role in sociology

(Macy & Willer, 2002), economics (Kirman & Zimmermann, 2001), psychology (Kenrick

et al., 2003; Latane & Bourgeois, 2000; Smith & Conrey, 2007), and anthropology (Kohler

& Gumerman, 2002). Their utility is not restricted to only predicting individual and group

behavior but also in organizing theories, highlighting idealized patterns, and determining

what data should be collected next (Epstein, 2008).

A second reason for choosing to explore collective behavior now is that there has been

exciting recent progress on empirical tools for measuring and manipulating the collective

patterns that people produce. For the laboratory-based psychologist, there are tools that

allow moderate-sized groups of people to be connected together via computers, calculators,

cell phones, or clicker response systems. These technologies have made it relatively easy

for experimenters to collect moment-by-moment data on the decisions of people as they are

influenced by the decisions of their peers (Goldstone & Ashpole, 2004; Goldstone &

Roberts, 2006; Kearns, Suri, & Montfort, 2006; Mason, Jones, & Goldstone, 2008). Virtual

worlds have made it possible to construct rich scenarios in which people can interact in a

shared synthetic world, and these interactions can be efficiently recorded and analyzed

(Bainbridge, 2007; Friedman, Steed, & Slater, 2007). By creating separate virtual worlds for

different groups, replicability is achievable, and the inevitability of group outcomes can be

quantitatively assessed (Salganik, Dodds, & Watts, 2006; Salganik & Watts, 2009). Soft-

ware environments such as Netlogo have greatly simplified the development of ‘‘participa-

tory simulations’’ in which people play the role of agents in a system that can be inhabited

by a combination of other real people or artificial agents (Wilensky & Stroup, 1999).

While all of these innovations have revolutionized the collection of experimental data in

well-controlled and precisely manipulable laboratory settings, a parallel set of technological

advances has radically improved the harvesting of data from real-world sources. Archival

data available from online news groups, blogs, social network services, chat groups, and

topical communities can effectively be used to explore naturally occurring coalition forma-

tion, idea spread, and group evolution (Berger & Heath, 2005). Gureckis and Goldstone

(in press) show one application of modeling tools to the now-available large database of all
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baby names in the United States over a 150-year period. Other data sets, such as the move-

ment patterns of mobile phone users (González, Hidalgo, & Barabási, 2008) or paper

currency (Brockmann, Hufnagel, & Geisel, 2006), have revealed general laws of cultural

diffusion. Carley, Martin, and Hirshman (2009) provide a demonstration of how demo-

graphic data can be used to constrain a model of media influence. Although these real-world

data sets are not as hygienically controlled as their laboratory counterparts, their sheer size

often allows factors to be statistically pulled apart even when they cannot be manipulated.

A third and final reason for the recent resurgence of interest in collective behavior is

humanity’s increasing connectedness. For example, understanding how the consumption of

fossil fuels contributes to climate change or how patterns of interconnectivity between

groups facilitate the spread of disease highlights the collective challenges that cognitive

science can, and should, be in a position to address. After all, many of these societal

challenges are a reflection of individual decision making and behavior but manifest at the

level of aggregates. Indeed, one of the key lessons from this issue is that patterns of individ-

ual behavior do not simply combine to determine the behavior of the group. As a result, a

key challenge for cognitive science is to not only understood how one might effectively

structure individual incentives consistent with societal goals but also the result this will have

when aggregated in larger populations. These two questions are two sides of the same

practical question and cannot be considered in isolation from one another, something that

the traditional individual-centric perspective of cognitive science often overlooks. Where

cognitive science may excel relative to other fields which focus on aggregate outcomes

(such as economics or sociology) is that we start with a much richer and realistic model of

the individual and can ‘‘build upward’’ leveraging what we, as a field, have learned about

complex systems organized at multiple levels (such as the brain).

Another prominent example of this increasing connectivity is apparent on the World

Wide Web. It has given us many compelling case studies of the nonlinear group dynamics

by which ideas are exchanged and people are connected to one another. The recruitment of

friends by friends on social networking sites such as Facebook makes it clear that one of the

most valuable resources that a service can offer its users is other users. Masses-produced

scholarly works such as Wikipedia make it clear that a large and decentralized collective

can still produce highly structured and high-quality information. Sites such as Youtube that

provide a repository for user-provided content make it clear that the popularity of a cultural

artifact is not only determined by its own intrinsic value but also by its prior history of popu-

larity. Videos that land on Youtube’s ‘‘Most watched’’ page are almost guaranteed of

becoming still more watched, often times dramatically so.

Although the technology underlying the Web is new, there is a deeper sense in which the

Web is simply one of the most recent and socially significant manifestations of people’s per-

petual drive to become more connected. Through innovations like the printing press, far-

reaching transportation systems, and telecommunications networks, our lives have become

increasingly intermeshed. Whether this has been good for individuals is debatable, but this

question is mostly beside the point for the human collective. In fact, the speed and momen-

tum of the collective’s push toward ever greater dependence suggests that it is a social force

that is beyond the control of individuals to curtail. Richard Dawkins (1976) has argued that
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the interest of humans may be quite distinct from the interest of our genes, resulting in peo-

ple behaving in ways that are opposed to their own good, but are for the good of their genes.

Examples include people sacrificing their lives to save their kin, and people having kin in

the first place even though they believe it will reduce their happiness. Analogous to

Dawkins’ selfish genes below the level of the individual, there are also ‘‘selfish teams’’

above the level of the individual. Both of these levels can cause an individual to behave

against his or her own self-centered interests. Historically, the influence of selfish teams

seems to be precipitously increasing as societies become more organized and differentiated

(Wright, 2001). Cognitive science risks marginalizing its relevance if it ignores the cogni-

tive effects that teams ranging from families, friend networks, companies, communities,

political parties, religious groups, and professional groups have on their members.

As mentioned earlier, one of the theses of this issue Topics in Congnitive Science is that

groups do not simply affect their members’ thoughts and behaviors. Indeed, one might go so

far as to say that groups of people themselves can be interpreted as information, processing

systems (Gureckis & Goldstone, 2006). Whereas individual humans have probably not

increased substantially in the complexity of their internal structure, the groups that they are

part of have. The Bureau of Labor Statistics currently lists 820 U.S. occupations, each repre-

senting a well-differentiated and stable professional role that a person can play in society.

As an example of this collective complexity, when we install a virus checker on our com-

puter, we use programs written by teams of people to prevent programs written by other

teams of people from incapacitating programs written by still other teams of people. In

1984, there were only about 1,000 devices that could reach our global digital network. By

1992, about 1 million could. In 2008, over 1 billion can. From 1990 to 2003, mobile phone

usage and global network usage each rose over 100-fold (Rawlins, in press). While social

critics have argued that people are less deeply enmeshed in their local communities

(Putnam, 2001), it is undeniable that people are becoming more broadly connected.

2. The dynamics of collective behavior

If we take seriously the premise that groups of people create emergent patterns that have

an integrity of their own, then it should not come as a surprise that there are striking ‘‘indi-

vidual differences’’ across different groups. Although there are several very general patterns

that groups of people form, such as positive and negative feedback loops, it is also helpful

to characterize critical dimensions of variation. Moussaid, Garnier, Theraulaz, and Helbing

(2009) divide groups into those with members that pass information directly versus indi-

rectly. Table 1 compares seven collective scenarios along a set of four alternative attributes.

2.1. Primary motivation of individuals

A traditional assumption in economic models of human behavior is that people behave

exclusively in accord with their own self-interest. However, there is a growing appreciation

that people are inherently social creatures, and that we often intrinsically care about the
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welfare not only of each other as individuals but also of the groups to which we belong

(Haidt, Seder, & Kesebir, 2008). Our identities extend beyond our own skins, when we bask

in pride for the hometown team or take personal umbrage when our colleagues are unfairly

attacked. In these and many other cases, who we are is distributed across the many groups

to which we belong, and our interests naturally extend beyond ourselves as individuals

(Smith & Semin, 2007).

2.2. Interactions among individuals

Emergent group patterns depend crucially on how the agents within the group interact.

Two dialectically related interactions are competition and cooperation, which are often

synthesized together in the same system. The same motivations that lead to competition

between companies, countries, or teams can lead to cooperation among the members of a

single company, country, or team. Frequently there is a dynamic interplay between coopera-

tion and competition. This dynamic is well illustrated by a spatial version of prisoner’s

dilemma in which agents organized in a lattice cooperate with or defect against their neigh-

bors (Nowak & Sigmund, 2004). Pockets of cooperators do relatively well and expand their

territory but then are ripe for invasion by opportunistic defectors. Often there is no stable

final configuration but rather patterns of cooperation that move across space and time,

followed by defectors.

Another form of interaction, called ‘‘stigmergy,’’ is only indirectly between individuals

(see Moussaid et al., 2009). Stigmergy is a form of indirect communication between agents

that is achieved by agents modifying their environment and also responding to these modifi-

cations (Dorigo, Bonabeau, & Theraulaz, 2000). This effect has been well documented in

ant swarms, in which ants lay down pheromones as they walk that attract subsequent ants

Table 1

A comparison of some illustrative collective behavior scenarios

Scenario

Primary

Motivation

of Individuals

Interactions

Among

Individuals

Typical

Dynamic

of Individuals

Characteristic

Outcome

Wise crowds Selfish None None Crowd average better than

average crowd member

Bee swarms

to find nest

Selfish

and group

Cooperative

recruitment

Copying good solutions Fast and high-quality

nest choices

Path formation Selfish Stigmergic Facilitation leads to similarity Growth of reinforced paths

Basketball teams Group Cooperative,

high bandwidth

Differentiation Coordinated play

Common

pool resource

Selfish Competitive Monitors, sanctions, conflict,

and coordination

Exhausted resources

without organization

Foraging Selfish Competitive Differentiation and copying Approximate match to

resource distribution

Open source

software

Selfish

and group

Cooperative Borrowing and improving Complex software
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(Theraulaz & Bonabeau, 1995). However, stigmergy is a much more general form of inter-

action than this, appearing, for example, on the website Amazon when one customer’s

behavior in buying books X and Y can affect a subsequent customer who has bought X and

is told by Amazon that other customers like them have also bought Y. Stigmergy is also evi-

dent on the video-sharing site Youtube. Popular videos appear conspicuously on the site’s

main page, assuring their further popularity (similar to Salganik & Watts, 2009).

2.3. Typical dynamic of individuals

The individuals within a group may engage in a number of behaviors that are contingent

upon the behaviors of their peers. Both copying, and its converse behavior, differentiation,

are common (Kennedy, 2009). Copying is abetted by the uniquely human ability to imitate.

Far from being the last resort of dull or dim-witted individuals, imitation is a sophisticated

skill requiring advanced cognitive capacities of motor perception, action planning, and

analogical reasoning (Blakemore, 2000). Alan Bandura (1965) has referred to imitation as

‘‘no trial learning,’’ even faster than the one-trial learning observed in animals who are pre-

disposed to form associations between food tastes and stomach aches. Imitation plays an

important role in spreading valuable innovations across a community. In fact, the nature of

a culture largely consists of the ideas, artifacts, beliefs, concepts, and values that spread

through a community by imitation and assimilation (Gureckis & Goldstone, in press).

There are other situations where people are motivated not to imitate, but rather to differ-

entiate themselves from others. In many situations, the group’s overall ability to solve prob-

lems is facilitated if the individuals divide the intellectual labor (Bettencourt, 2009), and

one’s individual lot is also improved if one occupies a relatively uninhabited, unique niche.

Auditioning actors, foragers, pioneering scientists, and workers looking for employment all

benefit from distancing themselves from other people who would otherwise be competing

for the same resources. As with cooperation and competition, the choice between imitation

and differentiation is often dynamic and simultaneously partakes of both processes. For

example, successful scientists may choose to copy the general area and approach of a well-

received piece of scholarship, but once in the general vicinity of this work, they may choose

to explore a somewhat new issue with somewhat new methods (Gilbert, 1977). This kind of

blend between imitation and differentiation could be well modeled by a reaction-diffusion

process that diffuses influential innovations to neighboring regions in science but also reacts

against exactly the same innovation being presented more than once.

2.4. Characteristic outcome

An important point about individuals’ motivations is that they need not predict group-

level outcomes. Individuals that are group oriented can create poorly functioning groups, as

when two pedestrians end up colliding with each other because they both try to get out of

the other person’s way (Helbing, Molnar, Farkas, & Bolay, 2001; Moussaid et al., 2009).

Conversely, as Adam Smith (1776) observed more than 200 years ago, well-functioning

groups can arise from individuals motivated only by their own self-interests.
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One of the most exciting prospects of current efforts toward modeling collective behavior

is to systematize the development of more effective ways not only to predict but to control

collective outcomes. For example, Moussaid et al. (2009) describe an ‘‘Active Walker’’

model of pedestrian movements that posits that walkers’ movements are a compromise

between going to their destinations and going where the travel is easiest. The success of the

Active Walker model suggests a novel method of crowd control. The most common method

of crowd control is through direct orders or laws. If we wish to direct pedestrian traffic, for

example, we may institute rules or physical barriers that prohibit certain movements. The

cost of such prohibitions is decreased pedestrian morale and the perception of excluded pos-

sibilities (Bonns & Carrus, 2004). An alternative method of crowd control is to change the

structure of the environment such that certain navigational behaviors are facilitated while

others are hindered. Even without instituting physical or abstract barriers, it may be possible

to indirectly control collective behavior with substantial efficacy. Collective behavior

is potentially more controllable than isolated individual behavior because of the strong

influences among the individuals’ behavior. A small pressure can often be magnified by the

positive feedback involved in individuals following other individuals (Dorigo et al.,

2000; Salganik & Watts, 2009).

Under this new approach toward fostering effective collective organization, the aim

would be to facilitate the development of self-organized patterns rather than dictate high-

level structures via top-down control. This conceptualization of design planning as facilitat-

ing self-organization rather than dictating final form may have an important moral for social

systems in general. Just as a school cafeteria can subtly nudge children toward good diets by

putting the healthiest foods at the front of the food line (Thaler & Sunstein, 2008), if good

enough models of collective behavior can be constructed, subtle nudges to collective

dynamics can have ripples of influence as people are influenced by each other. It is exactly

this reasoning that has led owners of some sports teams to hire a few ‘‘paid fans’’ to vigor-

ously show their support for the local team, in the hope that their enthusiasm will prove

infectious.

3. Illustrative case studies of collective behavior

With these four attributes in mind, we will now consider some case studies of collective

behavior. The purpose is to demonstrate some of the universal collective dynamics that

commonly recur when agents get together.

3.1. Wise crowds

James Surowiekci (2004) has made a spirited case for the ability of a group of people to

perform better than the average, and in some cases the best, individual performer from the

group. The canonical case for his argument is Galton’s (1907) report of fair-goers’

judgments of the weight of an ox. The average2 of the 787 guesses was within 1% of the

correct weight of the ox. According to Surowiekci, the conditions that allowed this excellent
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group performance were the following: a diversity of opinions, independence of members’

judgments, decentralization, and a good method for aggregating opinions.

From the current perspective, what is most distinctive about Surowiekci’s examples is

that they do not feature any interaction among the individuals within a group. Interactions

among people are viewed as dangerous because they can amplify incorrect information and

create speculative bubbles of people predicting other people’s reactions rather than ‘‘true

value.’’ Early decision makers can have an undue influence on the group’s behavior when

subsequent decision makers are influenced by their own judgments as well as their predeces-

sors’ judgments (Bikhchandani, Hirshleifer, & Welch, 1992). Bettencourt (2009) formally

models the importance of having sufficient independence among judges if the benefits of

synergistic aggregation are to be achieved.

However, preventing all interactions among people may throw out the beneficial consen-

sus-building baby with the speculative bubble bathwater (List, Elsholtz, & Seeley, 2008).

The Delphi technique for group decision making attempts to avoid undue early entrant

influences but still provide a mechanism for people to learn from each other’s valid informa-

tion. In this method, experts provide initially independent predictions with supporting ratio-

nales but afterwards are provided with an anonymous summary of these forecasts. These

forecasts may then be used to improve individuals’ predictions on subsequent rounds. In

general, judges’ opinions tend to converge over rounds of opinion exchange, and they tend

to converge on predictions that are more accurate than their original predictions (Linstone &

Turoff, 1975; Yaniv & Milyavsky, 2007). The empirical successes of information exchange

provide justification for considering the benefits of group structures that relax the

requirement of individual independence.

3.2. Bee swarms to find nests

Bee hives frequently need to relocate themselves to accommodate population growth

within the hive or changes in resource distributions. In Apis Mellifera, this is achieved by

individual bees communicating only locally with one another (Seeley, 2003). Scout bees

explore their area, and upon returning to their hive express the quality of a discovered nest

location through a ‘‘dance’’ that signals the distance and direction of the candidate site. The

length and intensity of a dance tends to be proportional to the quality of the site and influ-

ences the number of other scouts that will investigate the site. This cooperative recruitment

leads to a positive feedback that eventually leads to a consensus decision to move the swarm

to a new site (Conradt & Roper, 2005; List et al., 2008). It is important that the decision to

move nests be consensual because a split decision could weaken the two smaller groups’

survival ability.

This underlying consensus-building dynamic has important applications that extend far

beyond the bee hive (Couzin, Krause, Franks, & Levin, 2007). It features several attributes

that frequently occur in human collectives. First, individual group members only communi-

cate locally. Second, no individual is required to directly compare the relative quality of dif-

ferent options. Third, no individual needs to have an overview of the different options, but

all of the information held by individuals contributes to the eventual decision. Even though
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the decision is self-organized and determined in a decentralized fashion, it is nonetheless

consensual and efficient. Informative signals are amplified and noisy responses tend to be

deemphasized. Bettencourt’s (2009) information theoretic approach provides a basis for pre-

dicting when information is beneficially amplified by group interactions versus lost because

of extreme redundancies in possessed information. It is tempting to extend this logic to

explain the historical advantages of democracies over dictatorships (no matter how benevo-

lent the latter may be). Democracies allow a marketplace of opinions to determine the best

ideas without requiring the bottleneck of a single decision maker who will compare the

many attributes of multifarious options.

3.3. Path formation

The poet Antonio Machado reminds us that ‘‘Traveler, there is no path. Paths are made

by walking.’’ In collective systems ranging from ants to people, this is literally true. Path

systems spontaneously form when agents are motivated to take advantage of the trails left

by their predecessors. In the process of exploiting previously left trails, agents further rein-

force these trails, potentially leading to a lock-in of originally tentative and faint paths. For

example, early trail blazers through a jungle use machetes to make slow progress in building

paths—progress that is capitalized on and extended by later trekkers, who may then widen

the trail, then later put stones down, then gravel, and then asphalt.

The ‘‘Active Walker’’ computational model has done a good job of describing the paths

that ants and people form (Helbing, Keltsch, & Molnár, 1997a; Helbing, Schweitzer,

Keltsch, & Molnár, 1997b; Moussaid et al., 2009). Predictions of the models have also been

confirmed by laboratory experiments with humans (Goldstone & Roberts, 2006). Further-

more, parametric variation within the Active Walker model can potentially be used to guide

policy decisions. For example, two of the most important parameters of the model are the

visibility of paths (the extent to which an agent is influenced by distant patches’ travel ease)

and a path’s decay rate (how quickly the influence of a step on a patch’s ease of travel

dissipates). If path decay is set to a high level, then the paths that agents make disappear rel-

atively rapidly. The Active Walker model suggests specific interventions depending upon a

community’s goals. For situations where conserving the total amount of pathway is desir-

able (e.g., when valuable vegetation must be cut down to create the paths), the model’s

advice is that planners should explore ways of increasing either path visibility or path decay

(Goldstone, Jones, & Roberts, 2006). While increasing visibility intuitively makes a group

better coordinate itself to create and exploit good paths, it may be less intuitive that making

paths decay relatively quickly promotes better path systems. However, a moment’s reflec-

tion reveals that without decay, a group’s path system will become stuck on the early paths

created by walkers, and these paths will be bee-line paths connecting destinations rather

than path networks that effectively combine trails that are close. As shown in Fig. 1, the

most efficient path network, shown in A and approximating a Minimal Steiner Tree,3 is

achieved by a self-organized collective with highly visible, but short-lasting paths. The ben-

efits of this organization has implications for building social structures with flexible path

systems that reinforce, extend, and redirect preceding paths, be they physical or abstract
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paths. One moral for abstract paths (i.e., innovations) is that intentionally building in obso-

lescence into computer architectures, patents, and music may promote social structures that

build upon earlier innovations but are not unduly locked into their specifics. More broadly,

this model of group path formation provides a good example of how theory can provide

advice on how to nudge social systems to achieve desirable ends.

3.4. Basketball teams

The purpose of considering a sports team example is to make explicit several important

attributes of real teams. In contrast to group studies in the laboratory, naturally formed

teams often have a long-standing purpose and membership, specific tasks to perform that

are of vital importance to its members, a hierarchical structure that is nonetheless labile, and

support structures that the group is responsible for creating and maintaining. In the case of a

Fig. 1. The influence of parameters on path formation within the Active Walker model (Helbing et al., 1997a),

as reported by Goldstone et al. (2006). The destinations are shown by colored circles. The darkness of a patch is

positively related to its level of comfort for walking and indicates the eventual paths after 1,000 iterations. (A)

Decay rate of a path = 0.1, impact of each step on comfort level = 1,000, path visibility = 100; (B) decay

rate = 0.1, impact = 1,000, visibility = 1; (C) decay rate = 0.001, impact = 10, visibility = 10; (D) decay

rate = 0.1, impact = 1,000, visibility = 10. The most efficient path system is found in A, in which walkers are

strongly influenced by the comfort level of the patches (visibility of paths is high), but the influence of steps on

travel comfort quickly dissipates (paths decay quickly).
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basketball team, the messages passed between members have a far larger ‘‘bandwidth’’ than

those typically encapsulated in formal models. Players respond almost instantaneously to

each other and their opponents, taking into account not only their teammates’ positions but

also their projected intentions, abilities, and roles. Coaches do provide strategic direction,

but much more important are the in-the-moment negotiations and communications between

players (Van Wormer, Besthorn, & Keefe, 2007).

Ed Hutchins (1995a, 1995b) and Hutchins and Johnson (2009) have methodically studied

other teams that must show flexibility in dealing with environmental challenges, including

cockpits and navigation teams on a naval vessel. Many of these teams use representations

that are distributed across individuals, or involve a three-way interaction of individuals, the

environment, and the tools they have built. As formal models of group behavior are further

developed, it is worth bearing in mind the massively interactive nature of cockpit crews,

jazz bands, and sport teams. As Hutchins and Johnson (2009) observe, many teams interact

with a rich environmental context and in a highly multimodal fashion in which gestures,

tones, and rhythms are as important as symbolic content. Given the recent successes in

designing teams of robots to play soccer (Lakemeyer, Skylar, Sorrenti, & Takahashi, 2007),

we are optimistic that principles for even highly interactive and effective team behavior can

be formalized.

3.5. Common pool resources

One commonly recurring social pattern is for a collection of people to be sharing a

resource in which it is costly or difficult to exclude potential beneficiaries from using the

resource (Ostrom, Gardner, & Walker, 1994). In economics, these are known as common

pool resource (CPR) situations, and they feature subtractable resources in which one per-

son’s use of a resource detracts from the total amount of resource available to others. They

are important in society because they occur in water management, pollution (clean air is a

resource that is depleted by carbon emissions), pastures, forests, and fishing. The canonical

example of a CPR is cows grazing in a grassy open commons. Individual farmers are moti-

vated to increase the size of their herds and the caloric intake of each of their cows for

economic gain, but there is a risk of overharvesting the commons to destruction if all farm-

ers exploit the resource without restraint. An aquatic analog to this scenario is the lobster

harvesters of Maine, who collectively risk annihilating their lobster ‘‘crop’’ if they overhar-

vest (Acheson, 2003). As with many CPRs, the lobster harvesters have responded to

resource conflicts by taking the law into their own hands, for example, by cutting the rope

lines to traps of interlopers on their own traditionally held territories.

This example reveals an important and neglected group dynamic. Often times a contrast

is drawn between the emergent patterns of self-organized groups and groups that are driven

top-down by a leader, rule system, or hierarchical structure (Resnick, 1994). What this

rhetorical antithesis misses is that some of the things that self-organized groups do are elect

leaders, form rule systems, and institute hierarchies. Most groups that follow rules are typi-

cally self-organized, and the rule systems themselves are self-organized. The rules are the

tangible products of courts, parliaments, congresses, and governments at city, county, state,
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country, and world levels. In the absence of an existing governmental structure that effec-

tively regulated lobster harvesting, the harvesters themselves created this structure. Rules

and their less explicit cousin, norms, are complex systems in their own right, no less so than

bee hives or traffic jams. They do not exist on their own, but rather depend upon supporting

structures for their continuation. They require legal and governmental systems to be created,

changed, and eliminated (Ostrom, Dietz, & Stern, 2003). They require monitor systems

(e.g., police) to assure that they are being followed. They require sanctioning systems (e.g.,

jails) to assure that discovered rule violations are punished. Originally unorganized groups

will propose, vote upon, and live under rule, monitoring, and sanction systems that they con-

struct themselves (Janssen, Goldstone, Menczer, & Ostrom, 2008; Samuelson & Messick,

1995). In this manner, groups that face scarce resources are often importantly not simple
decentralized systems, but rather decentralized systems that spontaneously create rule

systems that are themselves decentralized.

3.6. Foraging

A problem faced by all mobile organisms is how to search their environment for

resources. Animals forage their environment for food, Web-users surf the Internet for

desired data (such as music files—Salganik & Watts, 2009), and businesses mine the land

for valuable minerals. When an organism forages in an environment that consists, in part, of

other organisms that are also foraging, unique complexities arise. The resources available to

each individual are affected not just by their own behavior but also by the simultaneous

actions of others.

Groups of animals often distribute themselves in a nearly optimal manner, with their

distribution matching the distribution of resources. For example, Godin and Keenleyside

(1984) distributed edible larvae to two ends of a tank filled with cichlid fish. The food was

distributed in ratios of 1:1, 2:1, or 5:1. The cichlids quickly distributed themselves in rough

accord with the relative rates of the food distribution before many of the fish had even

acquired a single larva and before most fish had acquired larvae from both ends. Similarly,

Harper (1982) observed that mallard ducks distributed themselves in accord with the rate or

amount of food thrown at two pond locations. Similarly, humans distribute themselves

appropriately (Goldstone & Ashpole, 2004), although all three species tend to exhibit under-
matching such that the distribution of foragers is not as extreme as the distribution of

resources.

Group foraging is a good example of a situation where group level properties emerge.

Whether a group matches a resource distribution, how quickly the group achieves an effi-

cient solution, and whether the group shows periodic waves of migration into and out of

pools (Goldstone, Ashpole, & Roberts, 2005) are all properties of the group as a whole. It is

no metaphor to talk of the group’s problem-solving ability as a whole. The group’s ability to

adapt the distribution of its members to the distribution of resources is not simply reducible

to its members’ problem-solving abilities (Theiner, 2008). In fact, it makes no sense to talk

of a single individual matching a resource distribution because it can only be in one place at

a time. Matching is only a property of the group. In this case, it truly is that the group has a
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mind of its own, or at least demonstrates simple problem-solving capacities. It may be

essentially unknowable by us whether the groups that we take part in are conscious or not,

just as the individual bee cannot fathom the decisions of the hive. However, if we define

cognition as the property which allows systems to produce flexible and adaptive problem-

solving behavior that is most felicitously interpreted as involving information processing,

then it is not unrealistic to view this type of adaptive behavior as a kind of ‘‘group

cognition’’ that can be evaluated distinctly from individual cognition.

3.7. Open source software

Although software is often expensive and strongly protected by copyrights and ‘‘digital

rights management’’ systems that prevent its copying, there has also been a strong and

growing movement to make software products, including the source code for the software,

available to any interested party without restrictions. Many open source software projects

have had more than 200 programmers contribute to them and are the product of over 50,000

collective programming hours. Why would a person volunteer her time to such a project? A

first reason often cited by programmers is to contribute to the open source community

because they believe in the collective value gained by making software freely accessible

(Lerner, Tirole, & Pathak, 2006). Second and relatedly, programmers like to make programs

that they develop for their own purposes available for others who have similar needs. By

making a project open source, a programmer can benefit because other people extend the

features of a project that they start. The operating system Unix is a striking example of this;

the robustness and functionality of Unix has extended far beyond its original creator’s Linus

Torvalds’ programming talents or time. Third, programmers may benefit personally by hav-

ing their name associated with a prominent open source project.

Many of the dynamics in the open source community match those previously described.

Like bee swarms establishing new nests, there is value to solidarity and consensus building

(Conradt & List, 2008). Although a single programming project may split into separately

developing projects any number of times, it is noteworthy how rarely this happens. Users

benefit from a single robust software package rather than a Balkanized set of related pack-

ages, and so do programmers if one of their goals is to have their work used by as many

people as possible.

Up until now, we have focused on collective behavior that emerges when individuals are

interacting locally with one another, with no appreciation for the higher-order patterns that

they are creating. The dynamics of the open source software movement do not fully fit this

scenario, given that one self-professed motivation for individuals’ behavior is to promote the

movement’s welfare. In this way, the human collective’s dynamic differs from those observed

with ants and bees. When the individuals that comprise a collective are capable of developing

concepts of the collective, then the collective’s identity and goal directedness are intensified.

When individuals can entertain thoughts like ‘‘My efforts may make other people also volun-

teer their time to ‘The Cause’ too’’ and ‘‘We should develop technology that allows people to

see, use, and extend what other people have contributed’’ then the groups formed by these

individuals look increasingly like self-steering systems. Thus, there is not always a zero-sum
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competition between levels of organization, such that the more ‘‘unit-like’’ one level is, the

less unit-like higher and lower levels are. In part because of permeability across levels of

organization, intelligent wholes are often associated with intelligent parts.

4. Issues concerning collective behavior

The above case studies are helpful in identifying a number of themes and controversies

surrounding collective behavior. These issues are also highlighted by the current contribu-

tions to this issue of Topics in Cognitive Science.

4.1. Does group behavior reduce to individual behavior?

There are several senses of reduction that could apply to collective behavior. One sense

is that ‘‘the behavior of the collective can be understood in terms of the behaviors of the

individuals considered separately’’ can be easily dismissed. Understanding the interactions

among individuals is critically important for understanding all of the examples of collective

behavior in Table 1 except for the first. A second sense, that ‘‘the collective has no proper-

ties that are not also properties of individuals’’ can similarly be dismissed. Groups often

have properties, like under- or overmatching resource distributions when foraging, that are

not attributable to individuals.

A third sense of reduction is ‘‘Collective behavior does not require theoretical constructs

above the level of the individual for its explanation.’’ By this account, any high-level

descriptions of a collective’s behavior are unnecessary and could have been just as well

described by referring to the properties of individuals instead. Contrary to this reductive

claim, we view group-level constructs to be theoretically indispensable. In fact, one of the

primary motivations for many agent-based models is to provide a theoretical bridge across

different levels of description. Consider Schelling’s (1971) classic ‘‘simulation studies’’ of

segregation. Schelling created agents belonging to two classes (represented by dimes and

pennies) that are reasonably tolerant of diversity and only move when they find themselves

in a clear minority within their neighborhood, following a rule like ‘‘If fewer than 30% of

my neighbors belong to my class, then I will move.’’ Despite this overall tolerance, the

agents still divide themselves into sharply segregated groups after a short time. What is

surprising is that this occurs even though no individual in the system is motivated to live in

such a highly segregated world. Although hardly a realistic model of migration, the model

was influential in contrasting group-level results (i.e., widespread segregation) and individ-

ual goals. If group-level constructs like segregation, wealth disparity, monetary flow, social

network topology (Kennedy, 2009), and intellectual climate are eliminated, then many of

the most surprising and useful theoretical claims for how individual-level incentives affect

these constructs would no longer be possible. Not only would we miss out on truly bridging

theories that show how one kind of behavior creates behaviors at a completely different

level, but we would also lose much of our ability to predict and control social structures at

scales that are meaningful for society.
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A fourth sense of reduction, that of ‘‘The patterns of collective behavior can be explained

by only referring to individuals and their interactions’’ is more viable, and it is an assump-

tion underlying many bottom-up agent-based models. Many agent-based models are framed

only in terms of local interactions among agents and their environment. A possible violation

of this kind of reduction, alluded to in the ‘‘open source software’’ section above, is that

sometimes cognitively sophisticated agents develop an awareness of collective organiza-

tions and patterns to which they belong. In these cases, the collective’s behavior can be

shaped by this awareness and can causally affect individuals’ behavior. However, an alter-

native interpretation of these scenarios is that individuals’ behavior is always influenced

locally by information immediately available, even if these pieces of information include

text that refers explicitly to groups, organizational hierarchies, or government regulations.

Our impression is that this interpretation is not intellectually productive for two reasons:

because it implies a hyperreductionist approach to these questions, and because it ignores

that individuals are not inherently nondecomposable units either. Cognitive scientists have

long wrestled with ideas concerning the appropriate levels of analysis (Marr, 1982). The

general consensus of the field is that all behavior need not be explained in terms of the activ-

ity of individual neurons even while recognizing that such neurons ultimately do give rise to

behavior. Likewise, a volvox can be optionally viewed as a single organism or a collection

of single-celled organisms. A human body is composed of 10 times more cells that do not

contain human DNA than cells that do, and many of these former cells are indispensible for

human digestion and waste regulation (Frank et al., 2007). The focus on only the lowest,

elemental level of analysis curtails our ability to uncover laws of organization that span lev-

els from individuals to groups. As an example, one such principal may be that an organiza-

tional unit, once constructed, seeks to preserve its own existence. This applies no less to

Microsoft, Israel, and the National Academy of Science than it does to individuals. Indeed,

a large part of the purpose of many organizations is to perpetuate themselves, as indicated

by an inspection of their mission statements, and their bylaws that define how the member-

ship replaces itself and how the bylaws are permitted to change. By taking organizational

constructs seriously, we open ourselves to the exciting possibility of a general science of

unit construction that spans all the way from biological cells through individual people to

collective organizations (see also Bettencourt, 2009).

There is a parallel between attitudes toward this fourth kind of reduction and program-

ming frameworks for agent-based models. In some frameworks, such as Netlogo and

Starlogo, the fundamental ontology consists of agents (called ‘‘turtles’’) and environmental

locations (‘‘patches’’). Models from chemistry, physics, biology, and the social sciences

can all be implemented by specifying agent-to-agent, patch-to-patch, and agent-to-patch

interactions. The resulting models certainly yield interesting global patterns, but there are

no programming constructs that explicitly control and represent this global structure. The

global-level patterns are supposed to emerge bottom-up from the lower-level interactions

(Epstein, 2007; Resnick, 1994). By contrast, in frameworks such as Repast and Swarm,

there are programming constructs that allow the user to explicitly refer to collectives as a

group and to control the group’s behavior directly. The same impulses that drove

Repast’s designers to allow group-level structures and hierarchical control underlie many
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researchers’ decisions to reject even this last form of reductionism. Carley et al. (2009)

provide an example of this approach, in which media sources such as radio and direct mail

are represented as agents even though they could also be subdivided into individual people.

4.2. Is ‘‘group cognition’’ possible, or a level confusion error?

As alluded to earlier, there are some researchers who argue that talk of ‘‘group cogni-

tion’’ is incorrect or cannot be taken literally. By this argument, the members of a group

may be cognitive agents on their own, but it is a confusion to think of the group as a whole

as a unified cognitive agent. One version of this argument is that groups do not, as far as we

can tell, have mental states in the sense of consciously introspectable experiences (Harnad

& Dror, 2006). A more general version of this argument is skeptical of any ascription of

cognition to systems that include people as only one element (Adams & Aizawa, 2001;

Rupert, 2004). This generalized argument was originally aimed at claims that minds can be

distributed across people and the tools they use (Clark & Chalmers, 1998)—with other peo-

ple’s minds being just one example of a useful tool. If minds never extend outside of indi-

vidual people’s skulls, then a fortiori they do not extend to include multiple people.

On the other side of the controversy are researchers who argue that people often work

together in such an integrated, interactive manner, that it is appropriate and useful to con-

sider the whole group as an information processing system (Hutchins, 1995a,b; Theiner,

2008). One of the considerations in favor of this argument is that the group engages in repre-

sentation building enterprises in which no individual has access to the complete representa-

tion. The group as a whole is needed to explain how the representations, often involving

physical devices, are processed. Theiner (2008) also argues that Clark and Chalmers’ parity

arguments for distributed cognition apply to group minds: ‘‘If, as we confront some task, a

group collectively functions as a process which, were it done in the head, we would have no

hesitation in accepting as a cognitive process, then that group is (for that time) performing

the cognitive process’’ (p. 313).

Consistent with Theiner’s general perspective, we recommend identifying possible cases

of collective cognition on the basis of information processing, rather than on the basis of

whether the collective has conscious mental states or not (Gureckis & Goldstone, 2006).

This is based simply on the pragmatic consideration that determining individual conscious-

ness, let alone group consciousness, is a murky and presumptive enterprise at best. From an

informational perspective, describing a group of people as a single functional unit is justified

to the extent that the elements within the group (i.e., individual people) are highly connected

with each other, and if there are relatively lower levels of connectivity between elements in

the group and elements outside of the group. This is a general criterion for considering any

set of elements to be part of a single unit. For example, a leading theory for the evolutionary

origin of mitochondria and chloroplasts is that they were originally independent bacteria

that became incorporated into the cytoplasm of cells, and once incorporated, conferred

advantages for the cell because they allowed cellular respiration (mitochondria) and photo-

synthesis (chloroplasts) for energy production (Margulis, 1970). We are less likely to view

mitochondria as the individual units they once were because of their strong dependencies
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with other internal cell elements. We view it as an attractive feature of this characterization

of ‘‘unithood’’ that it works at multiples levels, because we see nothing inherently unique

about individual people as units. Unithood is graded, and legitimizing one level of unithood

does not repudiate the legitimacy of other levels. Cells, individuals, and companies can all

be real(ly useful) descriptions.

We believe that groups of people are often times cognitively interesting systems because

they exist at the cusp of unithood. Before the bacteria has been incorporated into the cell at

all, it is simply an independent environmental influence on the cell. Once the mitochondria

loses its ability to make its own living in the world, it is no longer a unit by itself, but rather

part of the eukaryotic cell unit. In between being a free-agent bacteria and a mitochondrial

cog in the cellular wheel, the ‘‘bactondria’’ is both independent and dependent on the cell.

This status, we argue, is particularly important when it comes to cognitive systems. Compu-

tational complexity, in terms of being able to transmit information, is at its greatest for sys-

tems made of partially dependent elements. Sporns, Chialvo, Kaiser, and Hilgetag (2004)

have quantified the ‘‘information integration’’ of a system in terms of its total amount of

mutual information. On the one hand, if a system’s elements are completely independent,

then information cannot be transmitted from one part of the system to another. On the other

hand, if a system’s elements are too tightly connected, then they all end up possessing the

same information and communication is pointless. Human nervous systems have apparently

evolved so as to maximize the usefulness of neural communication (Sporns, 2002).

Similarly, we would argue that groups of people also adapt so as to create information-

amplifying systems. Useful human collectives are those that promote robust information

transmission across people yet avoid having everybody know the same things (see Mason

et al., 2008 for empirical evidence, and Kennedy, 2009 for relevant modeling). Collectives

that do this will maximize their computational capability.

4.3. What is the value of formal models for understanding collective behavior?

Many of this issue’s authors engage in formal computational and mathematical modeling

to understand collective behavior. Models of the kind employed by Moussaid et al. (2009),

Kennedy (2009), Gureckis and Goldstone (in press), Bettencourt (2009), and Carley et al.

(2009) have a number of attractive features that supplement traditional methods for exploring

group behavior. First, they are expressed with unambiguous mathematical and computational

formalisms so that once they have been fully described, their predictions are clear, quantita-

tive, and objective. Second, they provide true bridging explanations that link two distinct

levels of analysis: the properties of individual agents (e.g., their attributes and interactions),

and the emergent group-level behavior. When successful, agent-based models are particularly

satisfying models because they show how coherent, group-level structures can spontaneously

emerge without leaders ordering the organization, and sometimes despite leaders’ efforts.

Third, because the models are typically either simple or informed by real-world data, they are

appropriately constrained and cannot fit any conceivable pattern of data.

Many models of group behavior are conspicuously idealized and simplified, more so than

models of individual cognition. For example, agents are often represented by a single value
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or vector, the world is a two-dimensional grid, and interactions between agents simply

involve exchanging these values. Many of these simplifications are due to practical consid-

erations. If every agent in a model is as complicated as our state-of-the-science cognitive

models of memory, attention, learning, and problem solving, then the collective that

involves hundreds of these agents may well be extremely complicated and hard to under-

stand. It will have too many degrees of freedom and could easily end up being insufficiently

constrained.

Beyond this practical consideration, there are both costs and benefits of idealized models

of collective behavior. Many researchers purposefully choose to create highly idealized

models that boil down a collective phenomenon to its functional essence. Researchers pur-

suing idealized models are typically motivated to describe domain-general mechanisms with

a wide sphere of application. Physicists have recently entered the arena of modeling social

systems, and one of their attractions to the field is being able to apply the same kinds of

models that have been successfully applied to the Brownian motion of particles, gasses

under pressure, and interacting magnetic elements (Ball, 2004; Bettencourt, 2009; Helbing

et al., 1997a, 2001). A good example of the effectiveness of these idealizations is the fertil-

ity of networks analyses (Kennedy, 2009; Salganik & Watts, 2009; Watts & Strogatz,

1998). Power-laws have been implicated in the distribution of connections within actor, neu-

ral, power grid, and telephone networks (Barabási & Albert, 1999). Preferential attachment

has been posited to explain all of these networks, according to which the likelihood of a

node in a network attracting still further connections is proportional to its current degree of

connectivity. Certainly this mechanism is something of a caricature. Its simple mathematical

formulation fits none of the real networks exactly. However, a compelling argument can be

made that it captures a critical and powerful dynamic in each of them.

Other researchers have argued that most models of collective behavior are too simplified.

Some have chosen to develop much more complex models that incorporate highly detailed,

situation-specific parameter values. One example of this approach is Carley et al.’s (2009)

model of the way in which public opinion shifts in the face of different kinds of media. They

consider relatively rich interactions among agents who decide who they will communicate

with, what they will communicate, how much they will communicate, and whether they are

influenced by others’ communications. The researchers incorporate real-world demographic

information regarding race, income, and education, and the coverage zones of media such

as advertisements, the Web, telephone calls, and radio in order to constrain these more

complex models.

Choosing a similarly detailed approach to address the question, ‘‘Why did the Anasazi

people of southwestern United States abandon their homeland around 1350 AD?’’ research

teams have developed simulations that incorporate features grounded in historical records:

maize production levels, ground water reserves, the 3-D geography of the Anasazi’s Long

House Valley homeland, populations established from archeological digs, and social trends

regarding childbirth age, the average age of children leaving home, and food consumption

needs, all based upon recent maize-growing societies of Pueblo Indians descended from the

Anasazi (Axtell et al., 2002; Dean et al., 2000). While useful for answering specific histori-

cal or sociological questions, the disadvantages of highly specific models such as this are
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that critical dynamics and parameters may remain hidden among other less critical model

components, and it may be difficult to draw general implications for other future scenarios.

Another objection to the typical simplifications of collective behavior models is that the

choices of real-world properties to exclude from models unfortunately have neglected truly

essential aspects of human-to-human and human-to-environment interactions. Hutchins and

Johnson (2009) make exactly this argument on the basis of highly simplified communication

protocols typically used in models (including his own prior work on the self-organized

emergence of language norms; Hutchins & Hazlehurst, 2002). When people, or bonobos,

interact, they are not simply transmitting numeric values, or even digital symbols. They

interact in a rich world through gesture, tone, shared physical representations, and bodily

actions. Although these aspects could in principle be included in models of interaction, we

concur with Hutchins that the strategy of most current models is to distill worlds to their

simplest discrete structures, and interactions down to their simplest message-passing

essence.

Our own opinion is that a pluralistic approach toward understanding collective behavior

is in order, and that the field is sufficiently open that the relatively idealized modeling

approaches of Moussaid, Kennedy, Gureckis, Bettencourt, Carley, and Salganik are as likely

to produce fertile results as Hutchins’ more richly contextualized anthropological approach.

The large payoff that comes from creating general models that can apply across superficially

dissimilar scenarios and hence unify them is too valuable to bypass. We are not arguing that

an idealizing approach to collective behavior is superior to an in-depth, specialist’s focus on

a single domain’s details. Both approaches are necessary for a complete science, and in fact

it is only by understanding a system’s details that we can determine the general principles

by which it is governed. However, given the climate of progressive specialization in con-

temporary science, it is important to remember that many of the most noteworthy advances

of science, from Einstein’s unification of gravitational and electromagnetic acceleration to

Darwin’s unification of the principles by which snails and humans evolve, have involved

finding deep principles shared by seemingly dissimilar phenomena.

4.4. What does cognitive science have to do with it?

A final question is more specific to the audience of this issue. As cognitive scientists,

why should we care about collective behavior? Aren’t issues of group behavior better

addressed by economics, social psychology, sociology, and political science? The answer to

this question is twofold. First, at its core, cognitive science has always been an interdisci-

plinary approach to complex, adaptive, intelligent systems. In the preceding sections, we

have argued that collected units (of people, animals, and cells) also exhibit adaptive infor-

mation processing. Thus, our belief is that studying such systems is a natural extension of

the traditionally articulated goals of the field. Indeed, there is much that cognitive science

can contribute and learn from studying such systems. Second, cognitive science is in a

unique position to leverage theoretical tools for understanding individual behavior in order

to understand collective outcomes. For example, traditional economic approaches to market

behavior assume rational, utility-driven agents. In contrast, cognitive scientists can leverage
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our understanding of the limited learning, memory, and decision-making capacities of

individuals in order to understand aggregate outcomes. One example of this is presented in

Gureckis and Goldstone (in press) where modeling psychological assumptions about

novelty preferences and encoding of frequency information from the environment provides

a deeper insight into the dynamics of baby names in the United States.

5. The future of collective behavior

There are several topics that will likely be major areas of development in collective

behavior research. Some of our idiosyncratic suggestions for growth zones include the

evolution of social networks, the evolution of human language, identifying factors that

affect cooperation in public good and common pool resource problems, the dissemination of

innovations in communities, consensus decision making, experiments and models of

group selection, the spontaneous emergence of norms, traffic pattern analysis, classroom

dynamics, organizing work teams without management, coalition formation, and long-term

multiparticipant collaborations. Beyond these specific topics, we would also like to point to

general directions for future research.

5.1. Methods

Much of the empirical and theoretical work to be done will be in bridging individual-

level and group-level accounts of behavior. This will need to proceed by integrating individ-

ual experiments, group experiments, real-world social interactions, historical records, and

model building. As suggested in the introductory justification for the timeliness of collective

behavior, there are exciting developments along all of these fronts.

Experimentally, there are now tools that allow social scientists with little or no program-

ming experience to connect groups of people and systematically record their interactions.

The use of cell phones, connected calculators, computers, virtual worlds, and RF tagging

will allow two traditions of psychological experimentation to be united. In one tradition,

psychologists interested in social behavior have attempted to control the group and study

individual decision-making characteristics while manipulating the group’s apparent behav-

ior. The most prominent example of this strategy is Ash’s (1956) classic experiments on

conformity. Participants judged unambiguous stimuli after hearing other opinions offering

incorrect estimates. Sixty-nine percent of his participants conformed to the bogus majority.

For our purposes, what is important about this method, and the multitude of experiments

inspired by it, is that there is only one actual experimental subject per session. The other

participants are accomplices of the experimenter, giving responses scripted ahead of time.

The benefit of this approach is that it allows powerful experimental designs for unambigu-

ously determining the influence of the group on the individual’s behavior. The cost of this

approach is that it eliminates the possibility of finding emergent group-level patterns,

because all but one member of the group has a fixed behavior script. For this reason, we

have emphasized experimental designs in which all members of a group are free to choose
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their own behavior (see, e.g., the articles by Kennedy, 2009 and Salganik & Watts, 2009).

In fact, both kinds of designs are needed. In the future, we expect much more interplay

between group experiments that show important emergent patterns of behavior for an entire

group, and individual experiments with programmed peers that pinpoint the individual deci-

sion strategies that produce these global consequences.

In terms of modeling methods, we expect to see continued progress in the development

of both idealized and richly detailed simulations of social systems and experimental results.

In general, there is likely to be a trend toward increasingly detailed models. However, it

would be a mistake to jump directly to highly detailed models until many of the founda-

tional collective patterns are better understood. In our opinion, the most obvious future

direction for formal models is for a greater emphasis on validation. It is all too frequent to

see agent-based models being proposed in the literature with little effort made toward show-

ing the predictiveness of these models for actual data on social patterns. The articles by

Carley, Gureckis, Moussaid, and Salganik all take validation very seriously, but in general,

efforts to organize and predict large data sets through models is still in its infancy. One

exciting method introduced by Salganik and Watts (2009) is to incorporate replicability into

a naturally occurring scenario with strong group influences—downloading music files from

the Web. By partitioning participants into independent groups, they were able to measure

whether separate ‘‘re-runnings of history’’ would have produced the same most popular

songs, or whether different songs would arise as most popular because of rich-get-richer

dynamics operating on initially haphazard choices. Would The Beatles always have

achieved rampant popularity because of the sheer quality of their music, or were they just

lucky beneficiaries of cumulative advantage? Salganik and Watts’ surprising results, sug-

gesting that The Beatles’ tremendous success was not predestined and that a significant

helping of luck was involved, point to the power of combining laboratory-inspired replica-

bility with observations of naturally behaving collectives.

One particularly ripe arena for future modeling will be the application of models to

detailed data sets obtained from controlled laboratory settings. Often times, there is a dis-

concerting mismatch between the simplicity of formal models and the complexities of the

real-world situations. One strategy for bridging the gap between computational models and

group behavior phenomena is to create relatively simple laboratory situations involving

groups of people interacting in idealized environments according to easily stated ‘‘game

rules.’’ Some external validity is admittedly sacrificed in creating idealized experimental

scenarios, but this loss is offset by the advantage of having the assumptions underlying the

psychological experiments correspond almost exactly to the assumptions of the computa-

tional models, allowing the models to be aptly applied without sacrificing their concise

explanatory value and genuine predictiveness.

Although we (somewhat predictably, as psychologists) are advocating greater apprecia-

tion and use of the tools of experimental psychology, we also view the analysis of real-world

dynamics as a major research opportunity. Excellent data sets can either be developed or

easily accessed that describe collective behavior patterns involving decisions that really

matter to people. Examples from the present issue include music downloading (Salganik &

Watts, 2009), decisions on what to name one’s baby (Gureckis & Goldstone, 2009), and
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traffic patterns (Moussaid et al., 2009). Other prominent data sets include scholarly citations,

telephone calls, the movement of currency, disease spread, gossip spread, patterns of collab-

oration, patent uses and dependencies, jury decisions, and business transactions. These data

sets are not typically as clean as those collected from experiments, involve nuisance factors

and artifacts, and causality must be inferred from patterns of correlations rather than through

more statistically powerful interventions. However, the sheer volume of data in many of

these cases can compensate for a lack of experimental control, and for this reason they are

likely to be an important tool for not only the sociologist and economist, but for the psychol-

ogist and computational modeler as well.

5.2. The collective cognition of collective cognition

A good case can be made for applying the science of collective behavior to the emer-

gent science of collective behavior itself. Not unlike an ant colony in which an ant’s role

in the nest depends upon the roles assumed by others, a vigorous science of collective

behavior depends upon differentiated roles for empiricists, statisticians, theorists, and mod-

elers who interact to feed into and off of one another. Our understanding of collective

behavior is expected to grow fastest when different researchers each have their expertise,

but also know enough about each others’ fields that they can hold a sophisticated discourse

(Cowan & Jonard, 2001). Recent analyses of scientific collaborations, as revealed by

scholarly citation networks and journal databases, indicate three important results. First,

team sizes in science are increasing rapidly in terms of size and diversity (Börner, Maru,

& Goldstone, 2004). Second, the fastest rate of increase is found for high-impact journals

(Guimerà, Uzzi, Spiro, & Amaral, 2005). Third, the cliquishness of a team can be mea-

sured by seeing how dense the collaborative links are within the team relative to links that

connect the team to other teams, and Guimera et al. (2005) have shown that an intermedi-

ate level of cliquishness is ideal—not so cliquish so as to be inbred, but the team members

should also not be so promiscuous with their connections so as to lose their ability to dee-

ply communicate and connect with their team. In sum, along with the rest of science,

research on collective behavior can benefit from increased communication among its par-

ticipants. Ideally, a shared perspective will emerge that allows efficient transmission of

information, but this perspective should not become so predominant that it stifles diversity.

If researchers have exactly the same approach and perspective, then transmission of

information is pointless.

There are two symmetric cases of perspective sharing that we feel are particularly valu-

able for future developments. One activity that will likely lead to useful applications and

future progress is to increase the sophistication of biophysics models by incorporating richer

psychological and sociological models. In many cases, agent-based models conceptualize

agents as single values or scalars, or perhaps if they are more complicated, as vectors of

numbers on a variety of attributes. These models often assume that communication between

agents simply involves transmitting these numeric values from one agent to another. In fact,

we view both of these simplifications as dangerously limiting. At the agent level, knowledge

is organized in rich conceptual networks, not scalars. Human groups are networks of people,
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each of whom is a network of concepts. Agents vary on important factors that change how

they behave and think. At the community level, communication is often complicated.

Agents lie, fail to communicate because their conceptual systems are too dissimilar,

consume mass media and not just agent-to-agent communications (Carley et al., 2009), and

are not perfectly rational. So, physicists, mathematicians, biologists, and computer scientists

will need to talk to the social scientists.

Conversely, a second major area of progress will be for psychologists and sociologists to

increase the sophistication of their models by borrowing formalisms from bio-physics.

There are elegant treatments of diffusion, percolation, local interactions, and network

dynamics that could go a long way toward systematizing social science. Psychologists ought

to be at least striving for the kind of universal laws that are the physicists’ bread and butter.

Obviously people behave very differently, but a useful application of Occam’s razor is to

begin with the perspective that perhaps this diversity arises from a universal process of peo-

ple adapting themselves to their local contexts. So social scientists will need to talk to the

physicists, mathematicians, biologists, and computer scientists.

This call for cross-fertilization of traditional disciplines may be preaching to the cognitive

science choir. Cognitive scientists have long appreciated the benefits of approaching minds

and intelligent systems from multiple vantage points. Given the multitude of levels and

approaches needed to understand collective behavior, it behooves us all to interact with each

other to understand how people interact with each other.

Notes

1. In addition to the four articles on collective behavior in this physical issue of Topics in
Cognitive Science, there will be three additional contributions to the topic in an

upcoming issue.

2. The average was conceptualized as the median by Galton (1907) but mean by

Surowiekci (2004).

3. A minimal steiner tree (MST) is the set of paths that connects a set of points (e.g.,

destinations) using the minimal amount of total path length. If we restrict ourselves to

only creating direct connections between destination points, then the shortest total

path network that connects a set of points is called the minimal spanning tree.
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