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Abstract

Effective learning often involves actively querying the envi-
ronment for information that disambiguates potential hypothe-
ses. However, the space of observations available in any situ-
ation can vary greatly in potential “informativeness.” In this
report, we study participants’ ability to gauge the informa-
tion value of potential observations in a cognitive search task
based on the children’s game Battleship. Participants selected
observations to disambiguate between a large number of po-
tential game configurations subject to information-collection
costs and penalties for making errors in a test phase. An “ideal-
learner” model is developed to quantify the utility of possi-
ble observations in terms of the expected gain in points from
knowing the outcome of that observation. The model was used
as a tool for measuring search efficiency, and for classifying
various types of information collection decisions. We find that
participants are generally effective at maximizing gain relative
to their current state of knowledge and the constraints of the
task. In addition, search behavior shifts between an slower, but
more efficient “exploitive” mode of local search and a faster,
less efficient pattern of “exploration.”

Traditional experimental approaches to human learning
tend to emphasize passive learning situations. For example,
in a typical concept learning task, subjects are presented with
examples one at a time, the order of which are selected by
the experimenter (often at random and with exhaustive sam-
pling of the training set). However, this procedure ignores
the fact that real-world learning often requires learners to ac-
tively create their own learning experiences by constructing
revealing queries or engaging in exploration of unknown con-
tingencies (Nelson, 2005; Skov & Sherman, 1986; Sutton &
Barto, 1998). For example, children might ask about partic-
ular objects in their environment and receive feedback from
an adult (e.g., “What is that?”, “What does that do?”). In or-
der for such sampling behavior to be effective, queries should
be directed to maximize the potential information that could
be obtained from an answer. We need not ask about things
that we already know, and, all else being equal, should pre-
fer questions whose answers are expected to be most reveal-
ing (Klayman & Ha, 1987; Nelson, 2005; Oaksford & Chater,
1994).

In this paper, we present an initial study examining the mu-
tual unfolding of information search and learning in a task
modeled on the classic children’s game Battleship. Partici-
pants attempted to learn a hidden “concept” (the shape and
spatial configuration of three hidden rectangles) by sequen-
tially uncovering points on a large grid (see Figure 1). Each
observation cost points and participants were motivated to
minimize the points accumulated in each game. As a result,
they had to minimize the number of observations they made
in order to correctly identify the hidden rectangle configura-
tion.

In order to analyze participant’s performance in such a
complex and dynamic learning task, we develop a formal
model of information search based on Bayesian learning prin-
ciples. The model specifies how past observations should in-
fluence current beliefs, and how uncertainty should translate
into information sampling behavior on a trial-by-trial basis.
By comparing the utilities the model assigned to each possi-
ble observation with the selections that participants make, we
are able to characterize the efficiency of participants’ search
strategies relative to an ideal learner who had experienced the
same set of previous observations. In addition, the model al-
lowed us to objectively classify particular information collec-
tion decisions as being either “exploitative” of known contin-
gencies or “exploratory” of relatively unknown parts of the
game board. We find interesting behavioral differences be-
tween these two modes of information search.

Active Sampling in Concept Acquisition
The ultimate goal of the present work is to understand how
people actively seek information when acquiring new con-
cepts. Previous work has shown that allowing learners to
make their own decisions about what information to sample
can have an impact on both the efficiency of learning (Castro
et al., 2008) and what is learned (Fazio, Eiser, & Shook,
2004) in concept acquisition tasks. For example, Castro, et
al. (2008) found that allowing learners to actively select train-
ing examples greatly improved the efficiency by which they
learned a linear decision boundary. Fazio, Eiser, and Shook
(2004) studied the impact of experiential sampling on cat-
egory learning. Participants were presented with different
“beans” and were asked on each trial if they would like to
(virtually) eat the bean and find out if it was healthy or poi-
sonous. Decisions to not eat a particular bean thus provided
no information (i.e., feedback in the task was contingent on
sampling decisions). Experiential learners were found to be
risk averse, in that they showed a bias to think that novel
beans were bad and were more accurate classifying bad beans
than good beans. Interestingly, this asymmetry in learning
only occurred in situations where learners made the sampling
decisions themselves as opposed to conditions where full in-
formation was provided on each trial.

While allowing learners to make decisions about what they
want to learn about can have interesting consequences for
what is learned, these studies leave aside the question of ex-
actly how people decide which observations to make. How-
ever, assessing the “usefulness” of potential observations has
a long history of study in psychology, particularly in hypoth-
esis testing situations (Skov & Sherman, 1986; Klayman &
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Figure 1: The information search problem studied in this report.
Three rectangles of unknown sizes, shapes, and positions are hid-
den in a 10x10 grid. On each trial, participants make selections of
which grid cell to turn over (revealing either a miss or a part of a
hidden rectangle). The goal is to discover the true hidden concept
by actively choosing which new observations to make. Efficiency is
encouraged via a cost structure imposed on the task.

Ha, 1987; Oaksford & Chater, 1994). A classic finding is
that participants often show a bias towards using confirma-
tory test strategies when testing between alternative hypothe-
ses (Wason, 1960). While these original findings raised con-
cerns about the intuitive reasoning abilities of humans, other
researchers have developed probabilistic approaches which
calculate the expected information gain (among other norms)
of potential questions given an appropriate set of prior beliefs
and find that such utilities can often account for participants’
choices (Nelson, 2005; Oaksford & Chater, 1994).

Our work is inspired by these previous probabilistic ap-
proaches to hypothesis testing and information search as well
as research on “active learning” algorithms in the machine
learning literature which seek to optimize data selection for
training artificial learners (Mackay, 1992). However, most
studies in the hypothesis testing literature have focused on
simple, one-trial judgments and reasoning tasks with a rela-
tively constrained hypothesis space (often times there is only
a small set of possible hypotheses participants are attempt-
ing to distinguish). In contrast, our goal is to understand how
people search for information in complex, ongoing learning
tasks where they must continually updated expectations based
on past observations and use these expectations to drive new
information-seeking behaviors.

The Rectangle Search Game
In the rectangle search game (see Figure 1), the player is pre-
sented with a 10x10 grid that contains three, non-overlapping
hidden rectangles of different colors (i.e., the unknown con-
cept). On each trial, players can choose to turn over one
square in the grid, revealing either part of a hidden rectan-
gle or a blank space. Each game is divided into two phases:
an information collection phase, where participants make se-
lections of grid points to uncover and receive feedback, and
a test phase. In the first phase, participants are told that their
goal is to discover the identity of all three hidden rectangles

with the fewest number of observations possible. In order
to formalize the costs of information collection, participants
start each game with zero points, and each observation (i.e.,
choice to turn over a point on the grid) added one point to
their score. Subjects could choose to end the sampling phase
at any point by clicking on a button at the bottom of the screen
which would begin the test phase.

In the test phase, subjects were presented with an empty
grid, and were asked to “paint in” the correct position, shape,
and color of each of the three rectangles using the computer
mouse. Participants were informed (prior to the start of the
task and at the beginning of the test phase) that each incor-
rectly colored grid point would cost two (2) additional points.
Thus, errors were overall more costly than collecting addi-
tional samples. Following the painting phase, participants
were shown their final score for that game which was a com-
bination of the points incurred due to making observations in
the first phase, and the points incurred for making errors in
the test phase.

A Bayesian Search Model
In the following section, we describe a simple Bayesian
model of the task. It is important to point out that the model
we describe is not meant to mimic the specific cognitive strat-
egy that participant’s use while learning. Instead, our goal is
to formally specify the behavior of an “ideal” learner who
searches for information under the cost structure imposed by
the task, and to use this model as a tool for understanding
human performance1.

In formal terms, players in the game are presented with a
NxN grid of squares and are asked to sequentially make ob-
servations in order to learn the identity of the hidden game
board concept, ghidden ∈ G, where G is the universe of legal
game boards. Each individual game board is defined by a set
of three, non-overlapping rectangles, {rg

1, rg
2, rg

3}, and each in-
dividual rectangle rn is denoted by a quadruple (xn,yn,wn,hn)
where xn and yn are the coordinates of the top left corner of
the rectangle in the grid and wn and hn are the width and
height, respectively.

Learning On each trial, the player selects a single square
in the grid, xi j, and receives feedback about if it belongs to
r1, r2, or r3, or isn’t part of any rectangle. We denote the
feedback (or observed label) as ln where l0 means that the ob-
served point is empty, l1 means it falls within rectangle r1,
and so on (for short-hand, we simply denote a sampled loca-
tion and its associated label as xi j = ln). Since each point in
the grid is assigned to either one or zero rectangles and this

1In this sense our model provides a “rational analysis” of the
task. However, we are unable at the current stage of this work to call
our model the complete rational solution. One reason is that (for
computational reasons) the current model assumes that participants
always choose the option with the highest expected saving on each
trial (i.e., they assume the game will end on the next trial). It is
possible that participants engaged in multi-step planning which may
change the model’s valuation of particular observations, an issue we
hope to evaluate in future work.



assignment is deterministic, we assume that the likelihood of
a particular observation and associated label given a particu-
lar game board configuration is given by:

p(xi j = ln|g) =

{
1 if xi j ∈ rg

n,
0 otherwise.

(1)

for n > 0 (see Tenenbaum, 1999 for a similar formulation in
a similar task). Alternatively, if xi j = l0 then,

p(xi j = l0|g) =

{
0 if xi j ∈ rg

1 or xi j ∈ rg
2 or xi j ∈ rg

3,
1 otherwise.

(2)

This captures the basic intuition that empty squares provide
support for hypotheses that don’t place the observation within
a rectangle, while hits provide evidence for hypotheses that
do.

The prior belief about the likelihood of each individual
game board is represented by p(g). In our experiments, par-
ticipants were instructed that rectangles were chosen at ran-
dom and that each possible game board configuration was
equally likely (i.e., p(g) = 1/|G| for all g, a uniform prior).
This prior, along with a piece of new data, (xi j = ln), gives us
the following posterior belief about the identity of the hidden
board according to Bayes rule:

p(g|xi j = ln) =
p(xi j = ln|g)p(g)

∑gh∈G p(xi j = ln|gh)p(gh)
(3)

On each trial, the posterior belief p(g|xi j = ln) following from
the last observation is used as the new prior allowing for in-
cremental updating of our beliefs with each new observation.
After each update, the new prior is also used in predicting the
label associated with any point yi j in the grid. The predicted
probability that location yi j = lk (for k ∈ 0,1,2,3) given our
current belief p(g) is:

p(yi j = lk) = ∑
gh∈G

p(yi j = lk|gh)p(gh) (4)

Assessing the Value of Future Observations We now con-
sider how agents might use their beliefs at any point to select
the best new samples to learn about (i.e., active learning).
In our experiment, participants were given the explicit goal
of minimizing the number of points they accumulated during
each game, where each individual observation cost them Cobs
point, each error during painting/recall cost Cmiss points, and
each correctly colored square cost Chit points. Given these
costs, we can quantify the value of particular observations
with respect to the overall objective of minimizing accumu-
lated points.

Formally, we assume that the goal of the learner on each
trial is to select the observation xi j that minimizes the ex-
pected points that would be incurred during the recall phase if
the game were to end after that observation was made. With
costs Cmiss and Chit as defined above, we compute the ex-
pected cost EC(G) given the current beliefs as:

EC(G) = ∑
i

∑
j

4

∑
n=0

p(xi j = ln|G) · [Chit · p(xi j = ln|G)

+Cmiss · (1− p(xi j = ln|G))] (5)

which simply says that the cost associated with painting
square xi j = ln is related to the probability that we currently
believe that square x should be painted color ln (or not) times
the cost associated with being either correct or incorrect.
These expected costs are then weighted by our overall esti-
mate that the true state of affairs is that square xi j actually is
colored with label ln.

We can also calculate the saving (S) from making any ob-
servation as:

S(G,xi j = ln) = EC(G)− [EC(G|xi j = ln)+Cobs] (6)

and the expected savings (ES) from observation xi j is found
by calculating a weighted average of the savings based on our
current belief about the possible labels associated with xi j:

ES(G,xi j) =
4

∑
n=0

p(xi j = ln|G)S(G,xi j = ln) (7)

The choice that maximizes expected savings is predicted to
be the best choice on any trial according to the “greedy” strat-
egy2.

Classifying Search Behavior as “Exploration” or “Ex-
ploitation” In addition to predicting which observations
participants should make on each trial, the model provides a
simple way to classify each observation as either Exploiting
local evidence for a rectangle or Explore-ing relatively un-
known regions of the board. Prior to making a “hit” (i.e., an
observation that reveals a rectangle rather than empty space),
all observations are treated as Explore. Following a hit for
rectangle rn, we can compute the posterior probability that
each grid location belongs to rectangle rn using Equation 4.
Observations where the actual sample, xi j, match the con-
straint 0 < p(xi j = ln) < 1.0 suggest targeted attempts to
decrease uncertainty about rectangle rn and are considered
Exploit. In contrast, actions where p(xi j = ln) = 0 and
0 < p(xi j = lk) < 1.0 for any rectangle rk that has not yet been
discovered are Explore. Additionally, observations may be
classified as errors if they fail to resolve any uncertainty ac-
cording to the model (i.e., sampling where p(xi j = ln) = 1 for
one rectangle, or p(xi j = ln) = 0 for all rectangles).

The Experiment
Participants and Apparatus Six undergraduates at New York
University participated in the study to fulfill part of a class require-
ment. The experiment was run on standard Macintosh computers
over a single session.

2Our model ties sampling behavior to the cost structure imposed
on the task. However, another solution we considered but do not
report (due to space) assumes that agents to make observations that
provide the greatest reduction in uncertainty about the game board in
information theoretic terms (Kruschke, 2008; Nelson, 2005; Oaks-
ford & Chater, 1994).
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Figure 2: Comparison of a typical human search pattern in a single game along with the predictions of the model (subject 3, game 1). The
solid line in Panel A reflects the expected savings assigned to the participant’s sampling choices (Eqn. 7). The top dashed line demonstrates
the maximum expected savings that could be obtained from any choice on a given trial. The participant’s choices were maximally informative
if the solid line matches this upper bound. In order to determine a lower bound, we computed the average expected savings assuming that the
participant chose randomly among the remaining uncertain grid points (lower line, along with one std.dev. of that mean). The shaded regions
indicate choices the model classified as Exploit, while the unshaded regions reflect Explore trials. Regions are color coded according to
which rectangle is being exploited. Panel B shows the feedback the participant received on each trial. Finally, Panel C plots individual
observations super-imposed on the hidden game board (top row) along with the dynamic evolution of ES(G,xi j) over the entire grid as
evidence accumulates (bottom row). In both sequences, the small black ‘x’ shows the participant’s sample. The shaded regions in the top
row show the hidden rectangles for this game. In the bottom row, darker colors indicate that the model predicts higher expected savings from
selecting that point. Note how the model’s estimate of the most useful information accumulates in the regions surrounding hits (e.g., trials
2-8 or 11-14). See http://smash.psych.nyu.edu/projects/activelearning/ for some supplementary information including movies.

Procedure At the start of the task, participants were given on-
screen instructions detailing the rules and objectives, followed by
a single practice game. In addition, participants were shown a set
of 50 randomly generated legal gameboards on the screen to help
develop an appropriate prior expectation about what they might en-
counter in the task. Participants also completed a questionnaire
which tested for understanding of the game. After the experimenter
was confident that participants had a complete understanding of the
task, the experiment began.

For the remainder of the session, participants played a sequence
of games at their own pace. In order to facilitate between-subject
comparisons, the sequence of games experienced by each player was
identical. Each game-board contained three hidden rectangles that
were drawn randomly from a fixed set of eight possible sizes (1x3,
3x1, 1x4, 4x1, 2x2, 3x2, 2x3, 3x3, 2x4, 4x2, 3x4, 4x3) and were
placed on the grid with the constraint that the entire rectangle laid
inside the boundaries of the grid, and there were no overlapping rect-
angles As a result, there were 563,559,150 possible game boards that
the participant had to distinguish in order to identify the true game
board.

During the information collection phase, participants made ob-
servations by clicking on a grid point, after which the point changed
color according to its category membership (rectangle 1=red, rect-
angle 2=blue, rectangle 3=green, or no rectangle=grey). Throughout
the entire information collection phase, a visual reminder of the pos-
sible shapes and size of the rectangles was provided on screen to the
right of the current gameboard. After each observation, the subject’s
total number of samples was incremented and displayed at the top
of the screen as a reminder. All previous observations remained on

the screen throughout the information collection phase. There were
no time constraints on sampling, and subjects could choose to end
the first phase at any point by clicking on a button at the bottom of
the screen which would begin the test phase (described above).

The memory demands of the test phase were significant. How-
ever, the game was self-paced and thus, prior to terminating search
participants could spend as much time as they wanted memorizing
the layout of the uncovered rectangles. Overall, we were less inter-
ested in participant’s performance during the test phase, as much as
using that phase to set up an incentive for participants to actually
discover the true board during the search phase.

Results
Participants completed a variable number of games before the
end of the session; however, in our initial analysis (and due
to the computational complexity of computing the full model
solution of each trial of every game) we considered only the
first twenty games that everyone completed (a total of 120
unique games). On average, participants made 34.4 (SD=3.6)
observations and 1.8 sampling errors (observations that were
redundant given their current knowledge) per game.

Figure 2 presents the data from a typical game and gives
some intuition for the dynamics of the model (see the cap-
tion for a full description). In particular, Figure 2A shows the
overall expected savings of a participant’s choices compared
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Figure 3: Panel A shows the frequency of participants choices as
a function of the rank-order ES(G,xi j) on each trial. Panel B shows
the same data in cumulative distribution form. Panel C shows an
increased relative savings index (RSI) for participants’ observations
(left) as compared to a random strategy (right) considered separately
for Exploit and Explore trials. Panel D shows a corresponding
increase in median reaction time for Exploit trials over Explore
trials. In Panel E, left, the distribution of RSI values that occur
across all games is shown for all trials (top), explore trials (middle),
and exploit trials (bottom), with values counted in intervals of 0.05
RSI. At right is shown the distribution of RSI values of participants’
selections for the same groups of trials.

with the model, as well as the average expected savings for
remaining unknown points at each trial. Qualitatively, this
participant performed better than would be expected on aver-
age, and frequently selected the best possible observation as
scored by the model.
How effective were people’s sampling decisions? In or-
der to characterize the overall match of participant’s choices
relative to the model, on each trial of each game, we cal-
culated the ES(G,xi j) for each possible choice and rank or-
dered these choices. Then, we counted the number of trials in
which each subject actually made an observation at each rank
(given by the model). As Fig. 3A & B shows, participants
chose the optimal choice (rank 1) on more than 20% of the
trials, and chose an option in the top 10 approximately 50%
of the time (remember that participants made approximately
30 samples per game, thus there were usually more than 70

possible choices on any given trial).

Search strategies The preceding analysis might suggest
that participants’ decisions were generally well calibrated to
the structure of the task and reasonably followed the pre-
dictions of the model, but there were also systematic devi-
ations between the model and human data (e.g., the exam-
ple game in Figure 2A shows that choices during Exploit
trials were somewhat more effective compared to Explore
trials). In order to quantify this effect, we computed a “rela-
tive savings index” (RSI) which compares the expected sav-
ings of the participant’s observation on each trial to the max-
imum expected savings available on the current gameboard
(RSI = ES(G,xi j)

Max[ES(G,yi j)]
, where the Max[] is computed over all

possible observations yi j). An RSI of 1.0 denotes selection of
the maximally informative sample available, and a RSI of 0.0
denotes a completely uninformative, redundant observation.

As seen in Figure 3C, average RSI was significantly greater
during trials the model classified as Exploit (M=0.72,
SD=0.05) relative to trials that were classified as Explore
(M=0.63, SD=0.07), (t(5) =−4.36, p < 0.01), and both types
of trials were significantly better than would be expected from
a random sampling strategy (Explore: t(5) = 4.36, p < 0.01;
Exploit: t(5) = 9.47, p < 0.001). In addition, we found that
mean reaction time (RT) increased for Exploit (M=1126,
SD=265) trials relative to Explore (M=841, SD=147) tri-
als, t(5) = −5.03, p < 0.005 (see Fig. 3D), suggesting that
choices made during Exploit trials were not only more ef-
fective, but also more effortful, than in Explore trials.

To check that greater RSI of Exploit trials is a genuine im-
provement of performance and does not simply reflect aspects
of the distribution of ES(G,xi j) scores available on different
trials, we computed the full distribution of RSI and compared
this distribution to the distribution of participant’s choices.
Figure 3E shows the relative frequency of RSI values across
the entire gameboard (left) and the the frequency of the RSI
of participants’ choices (right). Particularly on Exploit trials
participants select points that fall within the top 5 percent RSI
at a much greater frequency than would be expected given the
overall distribution.

Learning to Learn We were also interested if participants
would show evidence of learning-to-learn (i.e., improvement
in sampling efficiency in novel games as a function of expe-
rience with other games). A 2 way ANOVA on reaction time
using game and search mode (Explore/Exploit) as repeated
factors found a main effect of search mode (F(1,195) =
96.5, p < 0.001), main effect of game (F(1,195) = 3.87, p <
0.001), but no interaction (F(1,195) = 0.32, p = 0.99) (see
Figure 4A). A similar 2 way ANOVA on RSI using game
and search mode as repeated factors also found a main effect
of search mode (F(1,195) = 45.2, p < 0.001), but no main
effect of game (F(1,195) = 1.42, p = 0.12) and no interac-
tion (F(1,195) = 1.0, p = 0.46), Figure 4B. Thus, although
there is no evidence of systematic improvements in RSI over
games, the general decrease in RT suggests that participants
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Figure 4: Panel A shows changes in average median reaction time
(RT) over the course of the games. RT is consistently lower for
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change over time (Panel B).

were able to make the same “quality” of choices in less time
as task experience increased.

Discussion
In this paper, we present a quantitative analysis of human be-
havior in a learning task which requires participants to contin-
ually update expectations based on past observations and to
use these expectations to drive new information-seeking deci-
sions. One interesting feature of our task is that it effectively
separates information seeking actions from the exploitation
of that information (which happens during the separate test
phase). By doing so, we were better able to measure how
these information generating actions relate to ongoing learn-
ing. In addition, unlike other sequential learning and decision
making tasks like the n-armed bandit or foraging tasks, there
are better and worse choices to be made even when exploiting
a single “patch.”

One interesting aspect of our results is the fact that both
participants (and the model) generally adopt a sequential
“hunt and kill” strategy when trying to disambiguate a com-
plex hypothesis space (often disambiguating one rectangle at
a time). This search strategy is a natural consequence of infor-
mation search in a highly “clustered” environment and paral-
lels search patterns adopted by biological organisms in spatial
foraging tasks where costs of traveling between patches fa-
vors local exploitation (Hills, 2006). However, since the costs
for switching between spatially disparate patches in our task
were negligible, local search here is more an emergent conse-

quence of adaptive information acquisition and the structure
of the hypothesis space.

More importantly, our results suggest a number of interest-
ing facts about human search behavior. First, the ability to de-
vise efficient queries – those that return the most information
or are most useful in reaching the learning goal – has previ-
ously been shown to vary across task domains, such that peo-
ple perform highly efficient search in some perceptual tasks
(Najemnik & Geisler, 2005) but exhibit biased search strate-
gies in more abstract or conceptual tasks (Klayman & Ha,
1987). The rectangle game combines both these elements:
reasoning about the next observation may require hypothesis
testing, but it is also possible to “perceive” certain informa-
tion affordances directly (such as the relative density of pre-
viously uncovered locations on the board). The levels of effi-
ciency observed in our task may reflect the confluence of both
perceptual and conceptual factors guiding search behavior.
Second, our modeling allowed us to objectively classify indi-
vidual trials as either exploiting a local information “patch” or
exploring relatively unknown regions of the game board. We
find that participants’ response time and search efficiency dif-
fers between these two “modes.” In contrast to theories which
effectively equate information seeking behaviors with ran-
dom exploration (such as the soft-max rule or epsilon-greedy
rule often used in modeling reinforcement learning tasks), we
suggest that information generating behaviors may naturally
take two forms: one is relatively fast and undirected while the
other is slower, more effortful, and efficiently exploits local
information constraints.

Finally, note that in this preliminary report, we focused on
how people select new observations in learning about a un-
known “concept,” but an interesting line of future work is to
consider how allowing learners to create their own learning
experiences can impact the acquisition and retention of new
concepts.
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