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Abstract

The decision to gather information should take into account both the value of information and its 

accrual costs in time, energy and money. Here we explore how people balance the monetary costs 

and benefits of gathering additional information in a perceptual-motor estimation task. Participants 

were rewarded for touching a hidden circular target on a touch-screen display. The target’s center 

coincided with the mean of a circular Gaussian distribution from which participants could sample 

repeatedly. Each “cue” — sampled one at a time — was plotted as a dot on the display. 

Participants had to repeatedly decide, after sampling each cue, whether to stop sampling and 

attempt to touch the hidden target or continue sampling. Each additional cue increased the 

participants’ probability of successfully touching the hidden target but reduced their potential 

reward. Two experimental conditions differed in the initial reward associated with touching the 

hidden target and the fixed cost per cue. For each condition we computed the optimal number of 

cues that participants should sample, before taking action, to maximize expected gain. Contrary to 

recent claims that people gather less information than they objectively should before taking action, 

we found that participants over-sampled in one experimental condition, and did not significantly 

under- or over-sample in the other. Additionally, while the ideal observer model ignores the 

current sample dispersion, we found that participants used it to decide whether to stop sampling 

and take action or continue sampling, a possible consequence of imperfect learning of the 

underlying population dispersion across trials.
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Human decision makers face a challenge: how to balance the advantage obtained from 

gathering additional information against the time, energy and money spent acquiring it. 

Stigler (1961) analyzed the economic costs of prolonging a search for a better price on a 

commodity. Since a relatively cheap price is often obtained after a relatively brief search, the 

cost of an exhaustive search will often not offset the savings gained by finding the cheapest 

price. Instead, consumers should continue searching only so long as the expected savings 
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from finding a cheaper price are enough to offset the additional costs in prolonging the 

search. Similar ideas are reflected in the mathematical literature on optimal sampling and 

optimal search (Wald, 1945a, 1945b; Arrow, Blackwell, & Girshick, 1949; Stone, 1989), and 

feature prominently in the study of animal foraging (Stephens & Krebs, 1986). The present 

study explores how effective humans are in trading off the costs and benefits of gathering 

additional information in a perceptual-motor estimation task with explicit sampling costs.

 Prior Work On Information Sampling Behavior

Information gathering (or “sampling”) behavior was a topic of interest starting in the 1960s 

(e.g., Green, Halbert, & Minas, 1964; Edwards, 1965; Wendt, 1969; Rapoport & Tversky, 

1970). Tversky & Edwards (1966), for example, had participants perform a probability-

learning task. On each of 1000 trials, participants had to guess which of two mutually 

exclusive alternatives would occur. Although participants were rewarded at the end of the 

experiment for all of their correct guesses, they received no feedback following each guess. 

To gain information about the relative frequencies of the mutually exclusive alternatives, 

participants could forgo guessing on any particular trial and observe the outcome instead. 

They forfeited any possible reward on trials that they chose to observe which event would 

occur instead of guessing.

The optimal strategy maximizing expected gain in that study was to observe a certain 

number of trials at the start of the experiment, keep track of the relative frequencies of the 

mutually exclusive alternatives, and then choose on the remaining trials the alternative that 

had occurred more frequently (Wald, 1947). Participants in Tversky & Edwards (1966) 

greatly over-sampled information, observing around 300 trials spread out throughout the 

experiment, compared to the optimal sampling strategy of observing fewer than 33 or 38 

trials (depending on the condition) at the start of the experiment. Busemeyer & Rapoport 

(1988) investigating a similar task also reported over-sampling in some experimental 

conditions.

Many recent studies, using card-sampling tasks for example, have not reported over-

sampling however (e.g., Hertwig, Barron, Weber, & Erev, 2004; Hau, Pleskac, Kiefer, & 

Hertwig, 2008; Ungemach, Chater, & Stewart, 2009). Participants in these studies were 

presented with two decks of cards that had different, unknown payoff distributions. To gain 

information about the payoff distribution of each deck, participants were encouraged to 

freely sample as many cards as they wished “until they felt confident enough to decide from 

which [deck] to draw for a real payoff” (Hertwig et al., 2004). The single random draw for a 

real payoff at the end of the task was in effect the execution of a lottery where the 

probabilities of different monetary rewards was initially unknown but could be learned by 

sampling.

A common conclusion of these recent studies was that the median number of cards that 

participants sampled across both decks (between 11 and 19 cards depending on the study) 

was surprisingly small. Sampling more cards would lead to better estimates of the respective 

payoff distributions of the decks (Hertwig et al., 2004; Hau et al., 2008; Ungemach et al., 

2009).1
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A limitation of these recent studies, however, is that the experimental designs could not be 

used to test whether implicit costs of sampling (e.g., the participant’s time, boredom, etc.) 

could explain participants’ sampling behavior. If there were absolutely no costs to sampling, 

then the optimal strategy maximizing expected gain would be to continue sampling 

indefinitely (or until the decks are depleted). No matter how many cards one has sampled 

already, additional samples lead to better estimates of the respective payoff distributions of 

the decks. Compared to the optimal sampling strategy, participants could only under-sample. 

On the other hand, if the costs of sampling were large enough, then the optimal behavior 

would correspond to not sampling at all, simply picking one of the decks at random without 

learning anything about each deck’s payoff distribution and expected reward. In such a case, 
any sampling at all would count as over-sampling.

It is possible that participants in these studies stopped sampling cards because of implicit 

sampling costs.2 But because we do not know what those costs are, it is incorrect to 

conclude that they under-sampled.

The goal of the present study was to examine information sampling behavior in a task where 

participants incur explicit sampling costs and explicit rewards for being successful and the 

optimal sampling rule is amenable to mathematical analysis. We will show in the Discussion 

that – by comparison of performance across experimental conditions – we can test whether 

implicit costs or rewards could explain participants’ sampling behavior. This approach 

allows us to characterize participants’ information sampling behavior: i.e., whether they 

over-sampled, under-sampled, or sampled optimally relative to a well-defined and realistic 

ideal observer model (Geisler, 2003).

 Overview of the Current Experiment

Participants performed a perceptual-motor estimation task similar to those used by Battaglia 

& Schrater (2007) and Tassinari, Hudson & Landy (2006). The goal on each trial was to 

touch a hidden circular target on a touch-screen display to earn points. The target’s radius 

remained constant throughout the experiment. The target’s location changed randomly from 

trial to trial but was cued by dots drawn from a circular Gaussian that was centered on the 

middle of the hidden target. We refer to these dots as “cues”. The pointing strategy that 

maximizes the probability of touching the hidden target is to touch the screen at the center of 

gravity of the cues (i.e., the sample mean).

Participants were given the option to sample cues – one at a time – at a fixed cost per cue. 

The more cues the participant sampled, the greater the probability that the sample mean 

would fall within the target region (because the variance of the sample means decreases with 

increased sample size) and the greater the probability that the participant would successfully 

1The frequent reports of participants taking a small number of samples in recent studies have led a number of papers to argue that 
taking a small number of samples can be advantageous in certain situations (Todd, 2007; Vul et al., 2014). For example, Hertwig & 
Pleskac (2010) present an analysis showing that taking a small number of samples may amplify differences between the payoff 
distributions of different options (cf. Kareev, 2000) thus making it easier to choose between them (meeting the criterion of satisficing 
laid out by Simon, 1956).
2Another possibility is that participants stopped sampling cards because of working memory limitations (Hertwig et al., 2004). There 
is little point in sampling additional cards if the participant can’t use them to update his or her estimate of the deck’s payoff 
distribution and expected reward.
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touch the hidden target. Previous studies with such tasks have shown that participants 

correctly interpret the arrival of more cues as reducing external uncertainty about the target’s 

location, and that they are more successful in localizing the hidden target with more cues 

(Battaglia & Schrater, 2007; Tassinari et al., 2006).

In the current experiment, however, the benefit of sampling additional cues to reduce 

external uncertainty about the target’s location came at a fixed monetary cost. The critical 

question is whether participants sample the optimal number of cues before taking action 

(i.e., before attempting to touch the hidden target): participants had to balance the benefit of 

gathering additional information (more cues) against the cost incurred to obtain it (Fu & 

Gray, 2006; Dieckmann & Rieskamp, 2007).

There is a growing interest in exploring different forms of decision making where 

probabilities arise from different sources, perceptual judgments, motor acts, or explicitly 

given numerical values (Trommershäuser et al., 2008; Wu et al., 2009; Maloney & Zhang, 

2010; Summerfield & Tsetsos, 2012; Trueblood et al., 2013). If under-sampling behavior 

were a robust aspect of human judgment and decision-making, we would expect to see it 

emerge in many types of tasks beyond those commonly employed in the cognitive decision-

making literature. Thus, our paper represents an attempt to generalize past findings to a 

wider variety of tasks.

 Experimental Task

The participant’s goal was to collect points by touching an invisible circular target placed at 

random on a touch-screen display. To gain information about the location of the hidden 

target, participants could request to observe the outcome of a theoretical dart-thrower who 

could see the hidden target (unlike the participants) and who would throw a dart towards it, 

aiming for its center. Participants could use the repeated outcomes of this theoretical 

person’s repeated throws as cues to the location of the hidden target.

Each participant alternated between blocks of two different conditions that varied in the 

cost-benefit structure of the task: (1) a low stakes condition and (2) a high stakes condition. 

In the low stakes condition, the reward for touching the hidden target was initialized at 40 

points on each trial and decreased by 2 points for every cue that was requested. In the high 

stakes condition, the reward for touching the hidden target was initialized at 60 points on 

each trial and decreased by 6 points for every cue that was requested.

Figure 1 illustrates two examples of the sequence of events within a trial. In the schematic 

example of a low stakes trial (left-hand panels), the participant chose to stop sampling and 

attempt to touch the hidden target after requesting nine cues. The bottom panel shows that 

the participant successfully touched the hidden target (the square response dot marking the 

location that the participant touched the screen is within the target region), and the target is 

revealed for feedback. The reward for this trial is 22 points, as indicated numerically at the 

center of the target. In the schematic example of a high stakes trial (right-hand panels), the 

participant chose to stop sampling and attempt to touch the hidden target after requesting 

four cues. The bottom panel shows that the participant missed the hidden target (the square 
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response dot marking the location that the participant touched the screen is outside the target 

region), and the target is revealed for feedback. Participants did not have to pay for the cues 

that they sampled on trials that they failed to touch the hidden target. Hence, the reward for 

this trial is 0 points (i.e., no reward), as indicated numerically at the center of the target.

Participants had to request at least one cue per trial, and they were allowed to continue 

sampling, one cue at a time, so long as the potential reward for successfully touching the 

hidden target remained greater than zero. Hence, they were limited to sampling 9 cues per 

trial in the high stakes condition and 19 cues per trial in the low stakes condition. The two 

experimental conditions were designed so that the maximum expected gain of the ideal 

participant (see below) would be very similar in the two conditions: 18.48 points per trial in 

the high stakes condition and 18.63 points per trial in the low stakes condition. The ideal 

participant obtains these maximum expected gains by sampling 4 cues on every trial in the 

high stakes condition and 7 cues on every trial in the low stakes condition (see derivation of 

the optimal sampling rule below).

 What Is the Optimal Sampling Rule?

In order to analyze behavior in our task, we begin by defining an ideal participant who 

samples information with the goal of maximizing expected gain. The radius of the hidden 

circular target remained constant throughout the experiment. The underlying bivariate 

Gaussian distribution from which the cues were drawn was isotropic (“circular”) with equal 

variance in each direction: . For convenience, we refer to this common variance as the 

population variance, denoted . The population variance remained constant throughout the 

experiment.

To maximize expected gain, an optimal participant must minimize their estimation variance 

by using the center of gravity of the cues (i.e., the sample mean) as their estimate of the 

hidden target’s location. The sample mean is the minimum variance unbiased estimate of the 

Gaussian population mean (Mood, Graybill, & Boes, 1974) which coincides with the center 

of the hidden circular target. Hence, for any number of cues, pointing at the sample mean is 

the strategy that maximizes the probability of touching the hidden target. The sample mean 

is distributed as an isotropic Gaussian centered on the target, but with reduced variance in 

each direction: . The larger the sample size n the more accurate the participant’s 

estimate of the center of the target.

Besides the variability of the sample mean, an optimal participant must take into account 

other sources of variability such as their perceptual-motor error in touching the screen. We 

refer to the aggregate of all the other sources of variability as additional pointing variability, 

and we will assume for simplicity throughout our analyses that it is isotropic Gaussian 

(Trommershäuser et al., 2003) and that its vertical and horizontal variances are both equal to 

a value denoted . Together, these two sources of variance give rise to the participant’s 

effective estimation variance in each direction as a function of sample size, denoted , 

as follows:
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(1)

In deriving the optimal sampling rule maximizing expected gain, we will first assume for 

simplicity that additional pointing variability is zero: . In the Discussion, we will 

revisit this assumption and explore the implications on optimal sampling behavior if . 

We will also assume for now that the ideal participant has an accurate estimate of the 

population variance. During the practice session prior to the experimental trials, the 

participant is given ample opportunity to develop an accurate estimate of , by observing a 

very large number of draws from the underlying Gaussian as described below. In the 

Discussion, we will revisit this assumption as well and explore the implications on optimal 

sampling behavior if participants do not have an accurate estimate of . Finally, because the 

target was revealed during feedback at the end of every trial (including during the practice 

session), we will assume for simplicity throughout our analyses that the participant has an 

accurate estimate of the radius of the hidden circular target.

Given , we can compute the probability of touching the hidden circular target as a 

function of sample size as follows:

(2)

where the region of integration T is the invisible circular target, and  denotes 

the probability density function of a bivariate Gaussian distribution centered on 

with covariance

(3)

We can estimate  by computing the probability that a draw from an isotropic 

Gaussian distribution, whose variance in each direction matches , will fall within the 

circular target region. This depends only on the probability that the distance between the 

drawn point and the origin is less than the radius of the target. This distance squared is a 

random variable multiplied by , and we need only compute the cutoff corresponding to 

the target radius squared to estimate the probability of a hit.

Given , we can compute the expected gain as a function of sample size as follows:

Juni et al. Page 6

Decision (Wash D C ). Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(4)

where R is the initial point value of the target, and C is the fixed reduction to the target value 

that is incurred for each cue that is sampled. Participants were not penalized for missing the 

target, and they were allowed to sample additional cues only so long as . All 

plots will be cut off where EG(n) starts to dip below zero.

Figure 2 plots the gain function R−nC, the probability of hitting the target , and their 

product, which is the expected gain function EG(n), against the number of cues sampled for 

the low stakes condition. The expected gain function is greatest when n = 7. The ideal 

participant who seeks to maximize expected gain would sample 7 cues and then touch the 

mean of the sampled cluster. A similar construction (see middle panel of Figure 7A and top 

panel of Figure 7B) shows the optimal number of cues that maximizes expected gain for the 

high stakes condition: n = 4.

 Dispersion

The ideal participant derived above makes its decision whether to stop or continue sampling 

without reference to how spread out a sampled cluster is. Since the ideal model has an 

accurate estimate of the population variance , there is no need for the ideal participant to 

make use of any aspect of a sampled cluster beyond its mean (just as, in computing a z-test 

with known population variance, we make no use of sample variance). We will revisit this 

assumption in the Discussion and it will prove convenient to define a measure for how 

spread out a sampled cluster is. While the underlying bivariate Gaussian was isotropic, the 

vertical and horizontal variances of a sampled cluster are usually different from each other 

and from one cluster to the next because of normal sampling variability. We define sample 

dispersion as , where  and  are the respective horizontal and vertical 

variances of a sampled cluster. The corresponding population dispersion is simply σP, the 

square root of the population variance .

 Method

 Participants and Apparatus

13 women and 15 men participated one at a time in the experiment, for a total of 28 

participants. Participants were graduate students, postdocs, or lab managers between the 

ages of 23 and 43, with a median age of 26 and a mean age of 27.6 (SD=4.71). None were 

aware of the purpose of the experiment. Participants were paid $10 plus any monetary bonus 

that they earned, which depended on their performance.

Eight participants were run at New York University, and 20 participants were run at the 

University of California, Santa Barbara. All conditions were identical except that the touch 

screen used at UCSB (19 inch diagonal) was larger than the one used at NYU (17 inch 

diagonal). Both LCD touch screens had the same resolution of 1280 pixels by 1024 pixels, 
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and we report all measurements in pixels. The conversion factor from pixels to millimeters is 

0.293 for the UCSB touch screen (375 mm by 300 mm) and 0.2637 for the NYU touch 

screen (337.5 mm by 270 mm).

Participants were asked to seat themselves at a comfortable distance and to adjust the height 

of the chair. The experiment was programmed and run using MATLAB and the 

Psychophysics Toolbox libraries (Brainard, 1997; Pelli, 1997).

 Stimuli

The hidden target, which was revealed during feedback at the end of every trial, was a grey 

circle with radius = 48 px. The cues, which remained on the screen throughout the trial, were 

small white circular dots with radius = 4 px. The cues were drawn from an isotropic, 

bivariate Gaussian distribution ( ) that was centered on the middle of the 

hidden target. At the left and right edges of the screen there were identical, vertical reward 

bars that decreased in height with each additional cue sampled (see schematic in Figure 1). 

Additionally, there was a number at the top of each bar indicating how many points would 

be awarded for successfully touching the target if no additional cues are sampled. To help 

participants remember which condition they were in, the reward bars were colored green 

during low stakes trials and red during high stakes trials.

 Design

Each participant ran in a practice session followed by the experimental session. The practice 

session consisted of 30 trials of each condition in alternating blocks of 10 trials, for a total of 

six practice blocks and 60 practice trials. The actual experiment consisted of 100 trials of 

each condition in alternating blocks of 25 trials, for a total of 8 experimental blocks and 200 

experimental trials. The ordering of the conditions was randomly assigned and 

counterbalanced between participants. However, the ordering was kept constant between the 

practice session and the experimental session. Hence, a participant assigned to start with the 

high stakes condition would start both the practice and the experimental sessions with a high 

stakes block. Each participant ran alone and the task was self-paced. Participants’ 

participation time (including practice) ranged from 34 min to 74 min, with an average of 53 

min.

 Monetary bonus

Points earned were converted into bonus money at a rate of five cents per point. This means 

that the maximum possible reward for touching the target was 38 points × $0.05 = $1.90 per 

low stakes trial, and 54 points × $0.05 = $2.70 per high stakes trial. Participants were 

informed that they would receive a monetary bonus on 5% of the trials, randomly chosen 

from the trials they completed in each condition at the end of the experiment (5 random 

trials from each condition were selected for payment). The total expected monetary bonus of 

the ideal participant who maximizes expected gain was: 10 trials × 18.55 points × $0.05 = 

$9.28.
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 Procedure

Participants were told that the theoretical dart-thrower was standing behind the participant at 

some unknown distance away from the touch-screen display. They were told that this 

theoretical person could see the hidden target (unlike the participants) and aimed each dart-

throw at the center of the target, but that when people throw darts, they rarely hit exactly 

where they aim. The experimenter emphasized that the theoretical dart-thrower was always 

going to throw the dart in the same way, always aiming for the center of the target, and 

always standing in the same exact location and at the same exact distance away from the 

target. Participants were explicitly told that this theoretical person’s throwing ability never 

improved or deteriorated throughout the experiment. Finally, participants were explicitly 

told that the size of the circular target would remain the same throughout the experiment.

Participants were asked to use their dominant hand throughout the experiment. The 

experimenter stayed in the room during the practice blocks to explain the task. The 

experimenter first demonstrated how one could sample as few as one cue per trial, and as 

many as 9 and 19 cues per trial (depending on the condition). The experimenter then told the 

participant that he or she should use the practice trials to explore and observe the outcome of 

different decision strategies. The experimenter remained in the room during the practice 

session to answer any questions that came up. Once the practice trials were complete, the 

experimenter left the room closing the door behind him.

At the start of each block, participants were shown an instruction screen that specified the 

initial point value of the target on each trial (40 points or 60 points) and the cost per cue (2 

points or 6 points). Participants were required to confirm the appropriate cost per cue by 

pressing “2” or “6” before the block would begin.

At the start of each trial, the screen was completely black except for the reward bars, which 

indicated the current reward for touching the target. To sample a cue, participants pressed the 

spacebar causing a small white circular dot to appear on the screen (the schematic in Figure 

1 shows the cues as small black circular dots on a white background). Concurrent with the 

appearance of the cue, the reward bars and numbers would decrease to indicate the 

decreased reward available for touching the target. If participants wanted more cues, they 

simply pressed the spacebar repeatedly until they were ready to reach for the hidden target. 

This easy and rapid mechanism of requesting cues and re-computing the value of hitting the 

target ensured that the information-access costs associated with sampling information were 

minimized.

To attempt to touch the invisible target, participants simply touched the screen with their 

finger causing a small purple response dot to appear (the schematic in Figure 1 shows the 

response dot as a black square dot). Participants were allowed to adjust their response by 

moving the response dot with their finger or by pressing the arrow keys. Once satisfied with 

their response, participants pressed the spacebar to receive feedback. During the feedback 

phase of each trial, the hidden target would appear along with the response dot and all the 

cues sampled on that trial. If the response dot was within the target, the trial was counted as 

a hit and the number of points awarded for that trial would appear at the center of the target 

(see left-hand side of Figure 1). If, however, the response dot was not within the target, then 
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the trial was coded as a miss and a 0 appeared at the center of the target (see right-hand side 

of Figure 1). A second spacebar press began the next trial.

Finally, at the end of both the practice session and the experimental session, participants 

were given feedback as to how they performed on each of 10 randomly selected 

experimental trials and how much bonus money they received as a result. The feedback at 

the end of the practice session was not actually paid out, but served to give the participant a 

rough sense of the range of actual bonuses possible.

 Results

 1. Number of Cues Sampled

The solid curves in Figure 3 show the respective high stakes and low stakes expected gain 

functions for the ideal participant with additional pointing variability equal to zero ( ). 

The expected gain for this ideal participant is maximized when sampling 4 cues in the high 

stakes condition and 7 cues in the low stakes condition. The horizontal displacement of data 

points in Figure 3 shows each participant’s mean and standard deviation of the number of 

cues sampled for each of the two experimental conditions. In addition, the individual data 

points appear at heights that correspond to their average gain per trial. For similar sampling 

behavior (i.e., similar location along the x-axis), some participants where better able to 

successfully touch the hidden target and collect more points (i.e., their data points are 

located higher up along the y-axis). The average number of points per trial that each 

participant earned across both experimental conditions ranged from 9.04 to 18.75 with a 

mean of 14.03 (SD=2.08), which is 76% of the maximum expected gain of 18.55 points per 

trial.

 1.1 Participants Adapted to Changes in the Cost-Benefit Structure of the 
Task—Overall, participants sampled significantly more cues per trial in the low stakes 

condition (M=6.94, SD=1.65) compared to the high stakes condition (M=5.65, SD=1.05), 

t(27)=6.22, p<.001. This indicates that participants adapted to changes in the cost-benefit 

structure of the task. Individually, 24 participants sampled significantly more cues per trial in 

the low stakes condition than in the high stakes condition (p<.05), one sampled significantly 

more cues per trial in the high stakes condition than in the low stakes condition (p<.05), and 

three showed no significant difference in the number of cues sampled per trial between 

conditions (p>.05); all individual significance tests were t-tests with 99 degrees of freedom. 

This result rules out the possibility that participants weren’t doing any cost-benefit analysis 

at all, and that they were only concerned with the challenge of touching the hidden target, a 

challenge that is identical in both conditions (up until nine cues, which is the limit in the 

high stakes condition).

 1.2 Participants Did Not Exhibit Systematic Under-Sampling—Overall, 

participants, did not significantly differ from sampling the ideal seven cues per trial in the 

low stakes condition (M=6.94, SD=1.65, t(27)=0.18, p>.05). Individually, 11 participants 

sampled significantly more than seven cues per trial (p<.05), 12 sampled significantly less 

than seven cues per trial (p<.05), and five did not significantly differ from sampling seven 
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cues per trial (p>.05); all individual significance tests were t-tests with 99 degrees of 

freedom.

On the other hand, participants sampled significantly more than the ideal four cues per trial 

in the high stakes condition (M=5.65, SD=1.05, t(27)=8.35, p<.001). Individually, 26 

participants sampled significantly more than four cues per trial (p<.05), one sampled 

significantly less than four cues per trial (p<.05), and one did not significantly differ from 

sampling four cues per trial (p>.05); all individual significance tests were, as above, t-tests 

with 99 degrees of freedom.

Taken together, participants did not exhibit any systematic tendency to under-sample 

information, and actually over-sampled information relative to ideal in the high stakes 

condition.

 2. Variability in Sampling Behavior Across Trials

Because of normal sampling variability, the currently visible cluster is sometimes more 

spread out and sometimes less spread out. The ideal observer model described above has an 

accurate estimate of the underlying population dispersion σP and should pay no attention to 

the sample dispersion S of the currently visible cluster (defined above). Specifically, because 

the cues are independent and identically distributed draws from a Gaussian distribution, the 

variance of the sample means in each direction, which is equal to , is the same for 

clusters of size n that happen to have low sample dispersion as for clusters of the same size n 
that happen to have high sample dispersion. Consequently, the probability of touching the 

hidden target , which is maximized by pointing at the mean of the sampled cluster, is 

the same for high-dispersion clusters of size n as for low-dispersion clusters of the same size 

n. We verified this fact through computer simulation. The only factor that affects the 

variance of the sample means (besides for the sample size n) is the underlying population 

dispersion σP, which was constant throughout the experiment.

In the high stakes condition, an optimal decision maker will always request four cues 

irrespective of how dispersed the cues are on the screen, while in the low stakes condition 

they will always request seven cues. Nonetheless, almost all participants in our experiment 

exhibited variability in the number of cues that they requested from one trial to the next (see 

Figure 4 for each participant’s trial by trial sampling behavior). Combined with our finding 

of over-sampling in the high stakes condition (see above), this result reveals a second way in 

which the participants’ sampling behavior differed from optimal.

One possible explanation is that variation in sampling behavior from trial to trial is the result 

of unsystematic noise in each individual’s decision-making process. A second possibility, 

which we evaluate below, is that some random characteristics of the visible cues during each 

trial, specifically their sample dispersion S (which is an index of how spread out the current 

cluster is), influenced the participants’ decision whether to stop or continue sampling, 

inducing variability in sampling behavior across trials.3

3We considered several different hypotheses for this analysis including (a) whether participants used the area of the convex hull of the 
currently visible cluster to guide their sampling behavior, (b) whether participants used the outlier-ness of the current cue relative to 
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 2.1 Stop Clusters vs. Continue Clusters—During a trial, participants sampled cues 

one at a time and had to decide, after sampling each cue, whether to stop sampling and 

attempt to touch the hidden target (given the currently visible cluster) or to continue 

sampling. The cumulative number of cues sampled so far during the trial (i.e., the current 

sample size) can be represented by the symbol N. In this section, we computed the sample 

dispersion S of the currently visible cluster for all values of N, and compared said sample 

dispersion when participants stopped sampling after the Nth cue to when they continued 

sampling after the Nth cue.

Table 1 shows the total number of ”stop” clusters and “continue” clusters across all 

participants as a function of N in each experimental condition. For example, participants 

almost always continued sampling after seeing only one cue (the exception being just one 

case in the high stakes condition). At the other extreme (N=9 in the high stakes condition, 

and N=19 in the low stakes condition), participants were obligated to stop sampling and take 

action (i.e., attempt to touch the hidden target). As a result, these two extremes were 

excluded from this analysis. For intermediate values of N, sometimes there were enough 

stop clusters and continue clusters to conduct this analysis meaningfully, but other times 

there were not. As such, we have shaded the cells in Table 1 for which we decided not to 

conduct a comparison because of the limited number of stop clusters and/or continue 

clusters. Overall, we carried out this analysis 16 times across both conditions (see the cells 

in Table 1 that are not shaded), and readers should keep in mind a Bonferroni correction of .

05/16 = .0031 when considering whether any particular result is statistically significant.

As shown in Table 1, there were 2641 trials in which participants sampled at least four cues 

in the high stakes condition. In 464 of those trials they decided to stop sampling and take 

action, while in the other 2177 they decided to request another cue. In Table 2 (high stakes 

condition; N=4) we show that the currently visible cluster when participants chose to 

continue sampling had a mean sample dispersion of 78.05 px (SD=21.86), compared to a 

mean sample dispersion of 71.65 px (SD=23.43) when they chose to stop sampling and 

attempt to touch the hidden target. A statistical test indicates that this difference in mean 

sample dispersion was significant: t(2639)=5.66, p<.001. Likewise, there were 2177 trials in 

which participants sampled a fifth cue in the high stakes condition. In 704 of those trials 

they decided to stop sampling and take action, while in the other 1473 they decided to 

continue sampling. The mean sample dispersion for continue clusters (M=80.72 px, 

SD=19.03) was significantly larger than the mean sample dispersion for stop clusters 

(M=74.72 px, SD=19.03), t(2175)=6.86, p<.001.

Table 2 shows the respective mean sample dispersion for “stop” clusters and “continue” 

clusters as a function of N in each experimental condition. Statistical tests are shown in bold 

when the mean sample dispersion was significantly larger for continue clusters than for stop 

clusters at the Bonferroni corrected p of .0031. The table shows that for almost all values of 

the previous cues of the currently visible cluster to guide their sampling behavior, and (c) whether participants used the sample 
dispersion S of the currently visible cluster to guide their sampling behavior. We give a full account of the analysis of this last 
hypothesis because it was the best predictor of participants’ sampling behavior among those we considered.
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N, and irrespective of the experimental condition, continue clusters tend to have higher 

sample dispersion than stop clusters.

These observations suggest that participants were influenced by how spread out the currently 

visible cluster was in deciding whether to stop sampling and attempt to touch the hidden 

target or to continue sampling. The larger the sample dispersion S, the more likely it is that 

participants would continue to sample.

 2.2 High Dispersion Clusters vs. Low Dispersion Clusters—For each value of 

N, and separately for each experimental condition, we sorted all trials across all participants 

based on the sample dispersion S of the currently visible cluster and grouped them into three 

equal-sized groups: high dispersion clusters, medium dispersion clusters, and low dispersion 

clusters. When the total number of clusters for a particular value of N was not divisible by 

three, we assigned an equal number of clusters to the high- and low-dispersion groups, with 

the surplus assigned to the medium-dispersion group.

The analysis of most interest in this section is the proportion of clusters that participants 

chose to continue sampling, denoted P[continue]. The circle data points in Figure 5 show 

P[continue] across all clusters, irrespective of their sample dispersion, as a function of N in 

each experimental condition. Notice that P[continue] tends to decrease as the number of cues 

sampled increases. This pattern is expected given the costs of requesting additional cues. 

However, as also shown in the figure, P[continue] in both conditions is consistently greater 

for clusters with high sample dispersion than for clusters with low sample dispersion, with 

P[continue] for clusters with medium sample dispersion nestled in between.

This analysis supports our conclusion from the previous section that increased sample 

dispersion S seems to prompt a greater tendency to continue sampling. For example, in the 

high stakes condition the proportion of clusters that participants chose to continue sampling 

for N=6 was 39% greater for clusters with high sample dispersion (P[continue] = .57) than 

for clusters with low sample dispersion (P[continue] = .41).

 Discussion

Overall, our results indicate that participants correctly sampled more cues in the low stakes 

condition compared to the high stakes condition. However, the results also show two distinct 

ways in which participants diverged from optimal sampling behavior. First, in the high 

stakes condition – but not the low – participants requested more cues relative to the optimal 

sampling rule that maximizes expected gain. Second, participants varied the number of cues 

that they requested from one trial to the next. We demonstrated that this trial-to-trial 

variation was correlated with sample dispersion: when the currently visible cluster was more 

widely dispersed participants were more likely to request another cue. But for the ideal 

participant maximizing expected gain, the sample dispersion of the current cluster – as 

opposed to the fixed dispersion of the underlying Gaussian – should play no role in deciding 

whether to stop sampling and attempt to touch the hidden target or to continue sampling. In 

the following sections we consider a range of hypotheses that might explain the observed 

patterns of sampling behavior.
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 3. Possible Explanations of Participants’ Over-Sampling Behavior

 3.1 Asymmetry Around the Peak of the Expected Gain Function—The 

expected gain functions in Figure 3 are asymmetric around the maximum. One hypothesis is 

that participants selected a cautious sampling strategy that is biased towards the shallower 

side of the expected gain function, to avoid the risk of ending up on the steeper side. Such a 

strategy of “erring on the shallower side” would lead to over-sampling in our case.

We doubt, however, that the observed over-sampling can be explained in this way. First, the 

keyboard presses to request cues were discrete, readily distinguishable, and completely 

under the participant’s control. There is no need to cautiously plan to press the sampling key 

5 times, instead of the optimal 4, to avoid the negligible risk of pressing it only 3 times. 

Second, the difference in expected gain between the shallower side (over-sampling) and the 

steeper side (under-sampling) is smaller than the difference in expected gain between both 

sides and the peak of the expected gain function. If participants, in the high stakes condition 

for example, were sensitive to the difference in expected gain between sampling 5 cues 

(17.80 points) and 3 cues (17.52 points) and thus over-sampled to err on the shallower side 

of the expected gain function, then they should also be sensitive to the larger difference in 

expected gain between the optimal 4 cues (18.48 points) and 5 cues (17.80 points).

 3.2 Optimal Compensation for Additional Pointing Variability—In deriving the 

optimal sampling rule, we assumed for simplicity that additional pointing variability (due to 

motor error, perceptual error, etc.) was negligible ( ): i.e., that the participant is 

perfectly accurate in touching the mean of the sampled cluster. One hypothesis is that 

participants sampled additional cues (relative to an ideal observer who has negligible 

pointing variability) to reduce external uncertainty about the target’s location as an attempt 

to compensate for additional variability in their perceptual-motor pointing response.

Sampling additional cues when , however, actually reduces the participants’ expected 

gain relative to the maximum expected gain that they could achieve given any additional 

pointing variability. Figure 6 shows that as additional pointing variability increases, the ideal 

observer would sample fewer cues – not more – in order to maximize expected gain. To see 

why, consider an extreme case where an individual’s perceptual-motor pointing error is so 

high that the chances of even touching the screen are very small. In such a case, the reduced 

external uncertainty in localizing the hidden target that is obtained by sampling additional 

cues is negligible compared to the individual’s extreme pointing variability. Instead, it would 

be best to just try to touch the screen (aiming for the middle of the screen) without sampling 

any cues at all, so that on the lucky occasions that the hidden target is touched the reward 

will be great.

In summary, taking into account additional pointing variability (i.e., ) would lead to a 

decrease in the number of cues one should optimally sample in order to maximize expected 

gain. However, as shown in Figure 3, most participants over-sampled. Hence, participants’ 

over-sampling behavior cannot be explained as optimal compensation for any additional 

variability in their perceptual-motor pointing response.
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 3.3 Risk Aversion—Over-sampling cues in this task is reminiscent of common 

descriptions of risk aversion in the literature. We explored the implications of having a 

nonlinear utility function, specifically a power function of the form  (Kreps, 1990, 

p. 82), rather than the linear gain function used in our ideal observer model. The gain 

function R−nC in Eq. 4 is replaced by a power utility function: .

When α>1 the power utility function is strictly convex (“convex utility function”) and when 

0<α<1 the power utility function is strictly concave (“concave utility function”). See Figure 

7A. As shown in the top panel of the figure, a convex utility function (α=1.5) shifts the 

optimal number of cues necessary to maximize expected utility in each condition to the left 

(i.e., fewer cues) relative to an ideal observer with a linear utility function (middle panel). 

Conversely, and as shown in the bottom panel of the figure, a concave utility function 

(α=0.5) shifts the optimal number of cues necessary to maximize expected utility in each 

condition to the right (i.e., more cues).

The hypothesis, then, is that the observed over-sampling (relative to an ideal observer with a 

linear utility function) is a consequence of having a concave utility function. However, while 

over-sampling in any one experimental condition can be fit with a concave utility function, 

no single concave utility function can account for participants’ pattern of sampling behavior 

across both experimental conditions. We found (by simulation) that any single concave 

utility function for our task will generate a greater over-sampling of cues for the low stakes 

condition than for the high stakes condition. I.e., the rightward shift of the peak of the 

expected utility function, relative to the peak of an ideal observer with a linear utility 

function, will be greater for the low stakes condition than for the high stakes condition.

For example, and as shown in the bottom panel of Figure 7A, a concave utility function with 

α=0.5 results in a rightward shift of 2 cues to the peak of the expected utility function for the 

low stakes condition (from 7 to 9) vs. a rightward shift of 1 cue for the high stakes condition 

(from 4 to 5). However, only 2 participants over-sampled more in the low stakes condition 

than in the high stakes condition. The rest of the 24 participants who over-sampled in the 

experiment (2 participants did not over-sample in either condition) either over-sampled only 
in the high stakes condition (15 participants), or over-sampled more in the high stakes 

condition than in the low (9 participants).4 Hence, participants’ over-sampling behavior 

cannot be explained as the consequence of having any single utility function that is a power 

function.

We also investigated (by simulation) the implications of having a nonlinear subjective 

probability function, using the model of Tversky & Kahneman (1992) as a reference. While 

nonlinear transformations of  alter the expected gain function EG(n) and could 

account for participants’ sampling behavior when looking at any one experimental condition 

in isolation, we found no single subjective probability function that could account for 

participants’ pattern of sampling behavior across both experimental conditions.

4For example, one participant (NYU 1 in Figure 4) sampled an average of 6.83 cues per trial in the high stakes condition (optimal is 4) 
and 8.15 cues per trial in the low stakes condition (optimal is 7). Hence, this participant over-sampled an average of 2.83 cues per trial 
in the high stakes condition compared to 1.15 cues per trial in the low stakes condition.
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 3.4 Implicit Costs and Rewards—Our experimental paradigm allows us to test 

whether implicit costs or rewards could explain participants’ sampling behavior. If 

participants have implicit rewards associated with success and also implicit costs associated 

with sampling, then only the sum of the two can be estimated from performance: i.e., the net 

implicit cost/reward. Had participants under-sampled (relative to an ideal observer who does 

not have any implicit costs or rewards) we would attempt to estimate the participants’ net 

implicit costs to test whether they could explain participants’ sampling behavior. Given that 

they did not under-sample, the participants’ net implicit cost/reward must be positive or 0.

The hypothesis, then, is that participants experience an implicit reward for successfully 

touching the hidden target – independent of the actual points earned – and that this implicit 

reward leads them to over-sample (cf. Juni, Gureckis, & Maloney, 2012). We evaluated this 

hypothesis by putting a fixed point-value on the implicit reward for successfully touching 

the hidden target (a free parameter). This free parameter shifts the diagonal reward function 

R−nC in Figure 2 upwards, which then causes a rightward shift to the peak of the expected 

gain function EG(n), with the magnitude of the rightward shift to the peak of the expected 

gain function being controlled by the magnitude of the upward shift to the diagonal reward 

function.

However, no single value of implicit reward can account for participants’ pattern of 

sampling behavior across both experimental conditions. We found (by simulation) that any 

fixed implicit reward for successfully touching the hidden target will generate a greater over-

sampling of cues (relative to an ideal observer who does not have any implicit reward and 

shown in the top panel of Figure 7B) for the low stakes condition than for the high stakes 

conditions.

For example, and as shown in the bottom panel of Figure 7B, a fixed implicit reward of 20 

points results in a rightward shift of 2 cues to the peak of the expected reward function for 

the low stakes condition (from 7 to 9) vs. a rightward shift of 1 cue for the high stakes 

condition (from 4 to 5). However, as mentioned in the previous section, 24 of the 26 

participants who over-sampled in the experiment over-sampled more in the high stakes 

condition than in the low. Hence, participants’ over-sampling behavior cannot be explained 

as the consequence of having any fixed implicit reward for successfully touching the hidden 

target.

 4. Sensitivity to Sample Dispersion

Our results indicate that participants were influenced by how spread out the currently visible 

cluster was in deciding whether to stop sampling and attempt to touch the hidden target or to 

continue sampling. We next consider why participants were more likely to continue 

sampling when the currently visible cluster was more dispersed and less likely when it was 

less dispersed.

 4.1 The Ideal Observer Model Has An Accurate Estimate of Population 
Dispersion—In deriving the optimal sampling rule, we assumed that the ideal participant 

has full knowledge of the underlying distribution from which the cues are drawn except for 

its mean (which coincides with the center of the hidden target). In particular, we assume that 
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the ideal participant knows the population dispersion σP of the underlying Gaussian. As 

explained in the Results, the ideal participant is insensitive to the incidental sample 

dispersion S of the current cluster, and will request the same number of cues on every trial 

regardless of how spread out the current cluster is. It is true that the dispersion of the current 

cluster provides information about the underlying population dispersion; but the ideal 

observer already knows the population dispersion. As a consequence, the ideal participant 

always samples the same number of cues on every trial (either 4 or 7 depending on the 

condition).

Participants could in principle get an accurate estimate of the population dispersion via the 

practice session prior to the experimental trials (the actual population dispersion σP of the 

underlying Gaussian was 80 px). The lowest cumulative number of cues sampled by any 

participant over the course of the 60 practice trials was 188 cues (the average across all 28 

participants was 410 cues, and the maximum was 774 cues). A participant with perfect 

memory and computational power would use 188 random draws to estimate the population 

dispersion of the underlying Gaussian at an average of 79.95 px (SD=2.92). However, 

arriving at such an accurate estimate of this task parameter requires accumulation of 

information across many trials.

 4.2 Hypothetical Memory-Less Model—Suppose, in an extreme case, that a 

hypothetical “memory-less” participant carries over no information about the underlying 

population dispersion across trials (though it is afforded knowledge that the cues are drawn 

from a circular Gaussian). In such a case, the participant could only use the information 

about cue dispersion that is available within the current trial to decide when to stop sampling 

(remember that the cues remained on the screen throughout the trial, so no memory is 

required to compute the dispersion of the current cluster). Every trial for such a hypothetical 

memory-less participant is, in effect, the first and only trial in terms of estimating the 

dispersion of the underlying distribution, which is in turn re-estimated with each additional 

cue that is sampled within a trial.

For such a memory-less model, a good estimate of population dispersion is the sample 

dispersion S of the current cluster. This estimated dispersion squared replaces the population 

variance  in Eq. 1 in estimating the effective estimation variance  as a function of 

sample size n, and the consequent estimated probability of successfully touching the hidden 

target  that is given by Eq. 2. Using this estimated , the memory-less model 

uses Eq. 4 to determine whether the expected gain EG(n) is higher or lower with more cues. 

If expected gain is estimated to decrease with more cues, then the memory-less model stops 

sampling and takes action (by pointing at the mean of the current cluster). If expected gain is 

estimated to increase with more cues, the memory-less model samples another cue and then 

repeats all these steps, starting with a re-estimation of population dispersion given the new 

cue that was added to the cluster.

We simulated a version of this hypothetical “memory-less” participant5 and summarize its 

hypothetical sampling behavior in Figure 8 and Table 3. The first thing to note is that while 

the ideal participant (with full knowledge of the underlying population dispersion) always 
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samples the same number of cues on every trial (either 4 or 7 depending on the condition), 

this hypothetical memory-less participant samples a variable number of cues across trials.

Table 3 shows that this memory-less participant’s variable sampling behavior across trials 

qualitatively matches human behavior (see Table 2) as follows: For all values of N, and 

irrespective of the experimental condition, continue clusters for this memory-less participant 

have a (much) higher sample dispersion than stop clusters. Furthermore, the mean sample 

dispersion of the clusters increases (greatly) for this memory-less participant as the number 

of cues sampled increases.

In summary, the memory-less model stops sampling when the sample dispersion S of the 

current cluster is relatively low and continues sampling when it is relatively high. This 

pattern qualitatively resembles human behavior, though the difference in mean sample 

dispersion between “stop” and “continue” clusters is much more extreme for the 

hypothetical memory-less participant that carries over no information across trials about the 

underlying population dispersion.

We conjecture that a compromise model based on the assumption that the participant carries 

over partial information across trials about population dispersion, perhaps in the form of an 

updating prior distribution on population dispersion, might better match human variability in 

sampling behavior across trials. If this conjecture is correct, then the observed link between 

the number of cues sampled and the sample dispersion S of the current cluster would be due 

to imperfect learning of the underlying population dispersion across trials.

If, in future work, we were to abruptly change the dispersion of the underlying Gaussian 

after several hundred trials, we could likely observe the effect of the prior. The memory-less 

participant’s sampling behavior would be affected by the new population dispersion 

immediately. The participant with a prior would lag behind until their prior is updated to 

agree with the new population dispersion, and the relative importance of prior and present 

might determine the rate of adaptation.

Finally, our analysis and simulation of the hypothetical “memory-less” participant shows 

that the observed human sensitivity to sample dispersion (cf. Table 2 and Figure 5) likely 

contributed to their trial-to-trial variation in the number of cues that they sampled. However, 

the hypothetical memory-less participant’s slight tendency to under-sample relative to ideal 

(see Figure 8 and compare to the ideal 4 and 7 cues depending on the condition) is a 

constant error (bias) that can be readily corrected. A modified hypothetical memory-less 

model that corrects this bias would no longer on average under-sample (or over-sample) 

relative to ideal, but would still sample a variable number of cues across trials. That is, a 

sensitivity to sample dispersion does not, on its own, lead to over-sampling or under-

sampling, but it likely does contribute to variability in the number of cues sampled across 

trials.

5As our participants almost never stopped sampling after seeing only one or two cues (cf. Table 1), we forced this simulated version of 
the memory-less model to sample at least three cues per trial.
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 Conclusion

We reported an experiment assessing how effective humans are in trading off the costs and 

benefits of sampling additional information in a perceptual-motor estimation task with 

explicit sampling costs. In our analyses we focused on the intermediate decisions that 

participants make after sampling each cue: whether to stop sampling and take action or 
continue sampling to reduce uncertainty. These intermediate decisions are similar to those in 

other cognitive decision-making tasks, such as the card-sampling tasks used in many recent 

studies (Hertwig et al., 2004; Hau et al., 2008; Ungemach et al., 2009; Hertwig & Pleskac, 

2010).

Our results have relevance to a broad range of information sampling tasks. For example, 

when learning new concepts or categories, people can often choose to actively sample 

additional members of a group (Markant & Gureckis, 2014) In such cases, issues like 

stopping rules for terminating active sampling, the number of samples actively requested, 

and the need to balance information-gain against sampling-costs play central roles.

Our experimental design has several advantages. First, given the explicit costs of sampling 

and explicit rewards for being successful, we can compute the optimal number of cues that 

an ideal participant would sample before taking action to maximize expected gain. Second, 

we tried to minimize any implicit costs of sampling (e.g., the participant’s time, boredom, 

etc.). The task was engaging; sampling a cue entailed pressing a key, which is a very simple 

and rapid action; and we limited the number of cues that participants could sample on every 

trial (either 9 or 19 depending on the condition). Third, our design allows us to test whether 

any observed deviations from optimal sampling behavior can be explained by implicit costs 

or rewards. This allows us to draw meaningful conclusions about how to characterize 

participants’ sampling behavior relative to a well-defined and realistic ideal observer model 

(Geisler, 2003).

We found that in one condition (high stakes) participants sampled significantly more cues 

than that predicted by the ideal observer model, while in the other condition (low stakes) the 

number of cues that participants sampled was not significantly different from that predicted 

by the ideal observer model. In contrast to the predictions of recent theories intended to 

account for why people under-sample in cognitive decision-making tasks (Hertwig & 

Pleskac, 2010; Vul et al., 2014), we found no evidence of under-sampling in our task.

We explored a range of hypotheses to account for participants’ over-sampling behavior in 

our experiment including (a) optimal compensation for any additional pointing variability 

(due to motor error, perceptual error, etc.), (b) risk aversion induced by any single concave 

utility function and (c) any fixed implicit reward for successfully touching the hidden target 

that is independent of the explicit reward earned. However, none of these hypotheses could 

account for the observed patterns of over-sampling behavior in our experiment.

The existing literature on information sampling behavior consists of experiments with 

designs that differ in many respects and it is difficult to isolate factors that might lead to 

over-sampling or under-sampling. Further studies are needed to determine the conditions 

under which people over-sample, under-sample, or sample optimally relative to ideal. We 
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emphasize however that it is difficult, if not impossible, to assess human sampling behavior 

relative to a realistic ideal without taking into account any implicit costs and rewards. In this 

study we demonstrated that this could be accomplished by comparing performance across 

different conditions with different explicit costs and rewards.

An additional novel finding from our study is that participants were more likely to continue 

sampling when the currently visible cluster was more dispersed and less likely when it was 

less dispersed. Since variance estimation is important in many decision-making problems 

(Kareev et al., 2002), this is likely an important factor to consider in studies of information 

gathering behavior.

Participants in our study were given ample opportunity during the practice session to learn 

the dispersion of the underlying Gaussian from which the cues were drawn. Given an 

accurate estimate of the population dispersion, the ideal sampling strategy maximizing 

expected gain ignores the current sample dispersion. Hence, sensitivity to sample dispersion 

in our experiment can only reduce the participant’s expected earnings relative to the ideal 

observer model. However, if the participant for whatever reason does not have an accurate 

estimate of the population dispersion, then the optimal sampling strategy maximizing 

expected gain should take into account the current sample dispersion. We conjecture that, for 

whatever reason, participants did not accumulate an accurate estimate of the underlying 

population dispersion across trials, and instead relied in part on the current sample 

dispersion to decide whether to stop sampling and take action or continue sampling.

As an everyday analogy, imagine trying to estimate the overall typicality of a genre of music 

by paying to listen to random examples of the genre online. Instead of deciding in advance 

how many examples to pay for, it would make sense to assess after each example whether or 

not to pay for another sample. The listener would pay for more samples if the early 

examples sound very different from one another (heightened early variance suggests greater 

uncertainty), and would stop sampling if the early examples sound quite alike. As Edwards 

(1965) notes, “if a small set of observations happens to be sufficiently conclusive, there is no 

need to buy more” (p. 312).
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Figure 1. Schematic of the sequence of events in both experimental conditions
At the left and right edges of the screen there were identical, vertical reward bars that 

decreased in height with each additional cue sampled. Left-hand panels show an example 

of a low stakes trial. In this case, the participant decided to stop sampling after requesting 

nine cues. The potential reward for successfully touching the hidden target was reduced 

from 40 points to 22 points, as indicated numerically at the top of the reward bars (each cue 

in this condition reduces the potential reward by 2 points). The square dot in the bottom left 

panel marks the participant’s final response (which is made by touching the screen and 

making fine adjustments), and the hidden grey target is revealed for feedback. Since the 

square response dot is within the target region, the trial is coded as a hit and the reward for 

this trial is 22 points as indicated numerically at the center of the target. Right-hand panels 
show an example of a high stakes trial. In this case, the participant decided to stop sampling 

after requesting four cues, and the potential reward was reduced from 60 points to 36 points 

(each cue in this condition reduces the potential reward by 6 points). Since the square 

response dot in the bottom right panel is outside the target region, the trial is coded as a miss 

and there is no reward (or penalty) for this trial as indicated numerically with a 0 at the 

center of the target.
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Figure 2. Expected gain function

The expected gain function EG(n) is the product of the probability  of touching the 

hidden target with n cues, and the gain R−nC that is earned for successfully touching the 

target with n cues (which takes into account the cost of sampling n cues). Probability of 

touching the hidden target is plotted on the right vertical scale, gain and expected gain on the 

left. This figure shows the construction of the expected gain function for the low stakes 

condition. See middle panel of Figure 7A and top panel of Figure 7B for a similar 

construction of the expected gain function for the high stakes condition.
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Figure 3. Results
The horizontal displacement of data points shows each participant’s mean and standard 

deviation of the number of cues sampled for the high stakes condition (data points shown in 

red in the online version of this figure, otherwise dark grey circles) and the low stakes 

condition (data points shown in green in the online version of this figure, otherwise light 

grey squares). The data points appear at heights that correspond to each participant’s average 

gain per trial. The expected gain curve for each condition is plotted in the corresponding 

color, with corresponding vertical lines marking the number of cues that the ideal participant 

should sample to maximize expected gain. For this figure, we plot the corresponding 

expected gain curves assuming that participants’ additional pointing variability . See 

Figure 6 and the accompanying discussion where we address the consequence that additional 

pointing variability (i.e., ) has on the optimal sampling strategy.
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Figure 4. Trial by trial sampling behavior
Some participants (most notably UCSB 2 and UCSB 12) showed little or no variability in 

the number of cues that they requested across trials. Most participants however did exhibit 

said variability. In the main text we explore what drives this trial-to-trial variation in 

sampling behavior. Note that there did not seem to be any systematic learning effects as the 

experiment progressed towards the optimal sampling rule, which is 4 cues in the high stakes 

condition (data points shown in red in the online version of this figure, otherwise dark grey 

circles) and 7 cues in the low stakes condition ((data points shown in green in the online 

version of this figure, otherwise light grey squares).
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Figure 5. P[continue]
Proportion of clusters that participants chose to continue sampling in each condition is 

plotted as a function of (a) the sample dispersion S of the currently visible cluster and (b) the 

numbers of cues sampled so far in the trial. The circle data points show P[continue] across 

all clusters irrespective of their sample dispersion. Triangles mark P[continue] for clusters 

with high sample dispersion, squares mark P[continue] for clusters with medium sample 

dispersion, and inverted triangles mark P[continue] for clusters with low sample dispersion.
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Figure 6. Effect of having additional pointing variability
The expected gain function EG(n) changes with increased pointing variability (due to motor 

error, perceptual error, etc). Notice that as additional pointing variability increases, one 

would need to sample fewer and fewer cues to maximize expected gain (indicated by the 

solid and dashed vertical lines for different amounts of σA).
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Figure 7. Effect of having a power utility function or implicit rewards
A. Power utility function. Middle panel shows the construction of the expected gain 

functions for both conditions when the utility function is the identity line with α=1. Top 

panel shows the effect of having a convex utility function with α=1.5. Such participants 

seeking to maximize their expected utility will sample fewer cues compared with a 

participant who has a linear utility function. Bottom panel shows the effect of having a 

concave utility function with α=0.5. Such participants seeking to maximize their expected 

utility will sample more cues compared with a participant who has a linear utility function. 

B. Implicit rewards. Top panel shows the construction of the expected gain functions for 

both conditions when there is no implicit reward for successfully touching the hidden target. 

Bottom panel shows the effect of having an implicit reward for successfully touching the 

hidden target that is equivalent to 20 points. Such participants seeking to maximize their 

total expected explicit and implicit reward will sample more cues compared with a 

participant maximizing explicit rewards only.
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Figure 8. Hypothetical sampling behavior for a simulated memory-less participant (100,000 
simulated trials per experimental condition)
The memory-less model does not accumulate information across trials about the dispersion 

of the underlying distribution from which the cues are drawn. Instead, the memory-less 

model estimates population dispersion using the sample dispersion S of the current sample. 

As a result, this hypothetical memory-less participant samples a variable number of cues 

across trials. In Table 3 we show that this hypothetical memory-less participant will sample 

more cues when the current cluster is more dispersed and fewer cues when it is less 

dispersed, a qualitative match to human sampling behavior (see Table 2).

Juni et al. Page 30

Decision (Wash D C ). Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Juni et al. Page 31

Ta
b

le
 1

To
ta

l r
es

pe
ct

iv
e 

nu
m

be
r 

of
 c

lu
st

er
s 

th
at

 p
ar

tic
ip

an
ts

 c
ho

se
 to

 s
to

p 
sa

m
pl

in
g 

an
d 

co
nt

in
ue

 s
am

pl
in

g 
as

 a
 f

un
ct

io
n 

of
 th

e 
nu

m
be

r 
of

 c
ue

s 
sa

m
pl

ed
 s

o 
fa

r 
in

 

th
e 

tr
ia

l a
nd

 e
xp

er
im

en
ta

l c
on

di
tio

n.

H
IG

H
 S

T
A

K
E

S 
C

O
N

D
IT

IO
N

L
O

W
 S

T
A

K
E

S 
C

O
N

D
IT

IO
N

N
st

op
co

nt
in

ue
N

st
op

co
nt

in
ue

1
1

27
99

1
0

28
00

2
1

27
98

2
0

28
00

3
15

7
26

41
3

12
0

26
80

4
46

4
21

77
4

22
1

24
59

5
70

4
14

73
5

48
8

19
71

6
74

9
72

4
6

51
8

14
53

7
43

1
29

3
7

49
4

95
9

8
17

4
11

9
8

33
9

62
0

9
11

9
N

/A
9

23
0

39
0

10
19

4
19

6

11
69

12
7

12
55

72

13
28

44

14
17

27

15
8

19

16
8

11

17
3

8

18
3

5

Decision (Wash D C ). Author manuscript; available in PMC 2017 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Juni et al. Page 32

H
IG

H
 S

T
A

K
E

S 
C

O
N

D
IT

IO
N

L
O

W
 S

T
A

K
E

S 
C

O
N

D
IT

IO
N

N
st

op
co

nt
in

ue
N

st
op

co
nt

in
ue

19
5

N
/A

N
ot

e.
 W

e 
ha

ve
 s

ha
de

d 
th

e 
ce

lls
 f

or
 w

hi
ch

 w
e 

di
d 

no
t c

on
du

ct
 o

ur
 c

om
pa

ri
so

n 
an

al
ys

es
 (

cf
. T

ab
le

 2
 a

nd
 F

ig
ur

e 
5)

 b
ec

au
se

 o
f 

th
e 

lim
ite

d 
nu

m
be

r 
of

 “
st

op
” 

cl
us

te
rs

 a
nd

/o
r 

“c
on

tin
ue

” 
cl

us
te

rs
.

Decision (Wash D C ). Author manuscript; available in PMC 2017 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Juni et al. Page 33

Table 2

Mean sample dispersion (in pixels) of the current cluster for “stop” clusters and “continue” clusters as a 

function of the number of cues sampled so far in the trial and experimental condition.

HIGH STAKES CONDITION

N Stop continue t-test

3 M=73.50 (SD=28.32) M=75.04 (SD=27.26) t(2796)=0.69, p > .05

4 M=71.65 (SD=23.43) M=78.05 (SD=21.86) t(2639)=5.66, p < .001

5 M=74.74 (SD=19.03) M=80.72 (SD=19.03) t(2175)=6.86, p < .001

6 M=77.76 (SD=16.50) M=83.36 (SD=16.73) t(1471)=6.47, p < .001

7 M=82.48 (SD=15.77) M=84.31 (SD=15.33) t(722)=1.55, p > .05

8 M=83.96 (SD=15.18) M=82.70 (SD=11.53) t(291)=−0.77, p > .05

LOW STAKES CONDITION

N Stop continue t-test

3 M=74.05 (SD=33.59) M=74.42 (SD=27.03) t(2798)=0.14, p > .05

4 M=68.99 (SD=21.99) M=76.86 (SD=22.42) t(2678)=5.01, p < .001

5 M=73.33 (SD=19.31) M=78.23 (SD=19.52) t(2457)=4.99, p < .001

6 M=74.53 (SD=17.47) M=80.62 (SD=17.62) t(1969)=6.78, p < .001

7 M=78.03 (SD=17.09) M=81.49 (SD=15.75) t(1451)=3.88, p < .001

8 M=77.89 (SD=14.16) M=82.86 (SD=15.27) t(957)=4.94, p < .001

9 M=82.19 (SD=13.79) M=82.83 (SD=14.83) t(618)=0.53, p > .05

10 M=79.94 (SD=13.74) M=84.79 (SD=13.44) t(388)=3.52, p < .001

11 M=81.15 (SD=10.47) M=85.75 (SD=14.19) t(194)=2.37, p = .02

12 M=84.26 (SD=12.78) M=86.99 (SD=14.27) t(125)=1.17, p > .05

Note. Statistical tests are shown in bold when mean sample dispersion is significantly larger for continue clusters than for stop clusters at the 
Bonferroni corrected p of .0031. See the Dispersion section in the Introduction for how we define and measure sample dispersion.
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Table 3

Hypothetical mean sample dispersion (in pixels) of the current cluster for a simulated memory-less participant 

for “stop” clusters and “continue” clusters as a function of the number of cues sampled so far in the trial and 

experimental condition.

HIGH STAKES CONDITION (simulated memory-less model)

N Stop continue

3 M=43.93 (SD=10.63) M=88.37 (SD=21.22)

4 M=81.93 (SD=15.44) M=126.15 (SD=10.30)

5 M=116.38 (SD=10.70) N/A

LOW STAKES CONDITION (simulated memory-less model)

N stop continue

3 M=30.71 (SD=6.72) M=79.42 (SD=24.66)

4 M=43.94 (SD=3.89) M=81.83 (SD=19.76)

5 M=55.06 (SD=4.12) M=84.92 (SD=15.84)

6 M=67.84 (SD=4.95) M=91.15 (SD=11.99)

7 M=83.43 (SD=6.61) M=104.68 (SD=8.00)

8 M=101.31 (SD=8.04) M=135.01 (SD=4.64)

9 M=129.78 (SD=5.13) N/A

Note. We ran 100,000 simulated trials per experimental condition. See the Dispersion section in the Introduction for how we define and measure 
sample dispersion.
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