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observer who maximizes expected gain. We found that observers integrated information from more than one cue, and that
they adaptively gave more weight to more precise cues and less weight to less precise cues. However, they did not assign
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Introduction

Our perception of the world is derived from sensory
measurements often referred to as cues. The challenge
for an organism is to integrate the information
provided by different cues to estimate important
environmental properties with high precision.1 The
fundamental nature of this problem is reflected in the
large literature on cue integration in sensory psychol-
ogy (see Jacobs, 2002; Landy, Banks, & Knill, 2011, for
brief reviews) and in cognitive psychology (see Slovic &
Lichtenstein, 1971, for extensive review). The most
important findings have been that observers (correctly)
give more weight to more precise cues and that the
precision of their estimates can approach the maximum
precision possible for any rule of integration.

The uncertainty or variance associated with any
piece of information can have its origin outside the
organism (due to environmental noise) or within the

nervous system (due to sensory noise). In judging the
location of a faint star, for example, one source of
uncertainty is atmospheric fluctuations that affect the
signal before reaching the retina, while another source
of uncertainty is variance in processing the signal
within the nervous system after reaching the retina.
Figure 1 schematizes the factors that could potentially
affect the precisions of cues (precision ¼ reciprocal of
variance) to some fixed environmental property x. The
dashed line marks the division between the external
world and the organism’s internal sensory world. The
measurement of each cue may be perturbed by additive
Gaussian environmental noise eei with mean 0 and
variance2 Ve

i , additive Gaussian sensory noise esi with
mean 0 and variance Vs

i , or both noise processes. In the
general case, each cue available to the organism Xi , i¼
1, . . . , n is perturbed by the sum3 of the two sources of
noise eei þ esi , and this sum is itself a Gaussian random
variable with mean x, variance Vi ¼ Ve

i þ Vs
i , and

precision pi ¼ 1/Vi. Importantly, and as shown in the
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Theory section, cues with higher precision should be
given more weight when making an optimal decision.

This general approach to cue integration is shared
across different areas of psychological research, al-
though with slightly different emphases. While the
cognitive literature tends to focus on integration of
stochastic cues where the source of uncertainty is
primarily external to the organism: Ve

i �Vs
i , i¼ 1,. . ., n

(e.g., Busemeyer, Myung, & McDaniel, 1993; Giger-
enzer & Goldstein, 1996), the sensory literature tends to
focus on integration of deterministic cues where the
source of uncertainty is primarily internal to the
organism: Vs

i �Ve
i , i ¼ 1,. . ., n (see Trommershäuser,

Körding, & Landy, 2011). Furthermore, while cogni-
tive studies typically address how people integrate a
variable numbers of cues that are available simulta-
neously or sequentially, sensory studies are typically
limited to how people integrate just two or three co-
occurring cues.

The study presented here uses experimental tech-
niques commonly employed in the sensory literature to
investigate how people integrate seven cues presented
sequentially where the source of uncertainty is primar-
ily environmental and external to the organism. We
address two key issues. First, can observers learn to
give more weight to more precise cues when cues are
inherently stochastic and distributed across time?
Second, how does their performance compare to that
of a perfectly adaptive, ideal observer who integrates
cues so as to maximize the precision and expected gain
of the resulting estimates?

Experimental task

The experimental task was presented using a simple
cover story akin to a video game. Observers were
tasked with trying to locate the best location to drill an
‘‘oil well’’ along a horizontal line. The true best location
for the well, x, was the environmental property of
interest. On each trial, observers were given seven

different cues Xi , i¼ 1, . . ., 7 as to the best location for
the well by seven distinct surveying companies. Each
cue was presented as a tick mark that flashed briefly to
indicate a spatial location along the horizontal line.

An example of the sequence of events on each trial is
illustrated in Figure 2. Observers were told that the
presentation order of the seven surveying companies
would stay constant throughout the experiment (i.e.,
the first tick on each trial would always be provided by
Company A, the second tick by Company B, and so
on). Observers were further informed that some of the
surveying companies might be better than others at
estimating the best location for the well.

Figure 1. Model of factors that could potentially affect the

precisions of cues. Multiple cues Xi to an environmental property

x are contaminated by external environmental noise eei and by

internal sensory noise esi . See text for details.

Figure 2. Schematic of the experimental task. The observer

sees seven cues to the location of a hidden target on a horizontal

line. The cues are presented one at a time, and the horizontal

coordinate of each cue is drawn from a different Gaussian

distribution centered on the target. After the last cue vanishes, the

observer positions a response cursor to mark his estimate of the

location of the hidden target. The distance between his estimate

and the true location of the target determined his chances of

winning a monetary reward on a random subset of the trials (see

text). At the end of each trial, the observer is shown the target’s

location and the chances (percent) he would win the prize if the

current trial were selected for reward.
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The seven tick locations, or cues, were drawn from
seven different Gaussians with a common mean x but
with different variances Vi , i¼ 1, . . ., 7. The underlying
variance of each cue was determined by presentation
order. The common mean of the Gaussians (the true
best location for the well) was varied at random from
trial to trial. At the end of each trial, observers were
provided with visual feedback indicating the true best
location for the well. Observers in our study could
potentially use this feedback to track the precision of
each surveying company and adjust their weighting of
the cues accordingly.

All observers ran in two different conditions on
separate days that differed in the presentation order of
the seven cues. In the decreasing precision condition,
the seven cues were ordered from most precise to least
precise. In the increasing precision condition they were
ordered from least precise to most precise. Ultimately,
the precisions of the seven surveying companies was the
same in the two conditions, the only thing that changed
was their presentation order.

We chose to space the precision (and, therefore, the
optimal weights) of the cues in a linear fashion. Figure
3A shows the probability density distributions of the
seven Gaussians, and Figure 3B shows the correspond-
ing optimal weighting function that either increases
linearly or decreases linearly depending on the presen-
tation order of the cues. Recall that, as precision is the
reciprocal of variance, more precise cues have lower
variance while less precise cues have higher variance.

While our sequential cue integration task has the
same formal structure as typical sensory cue integration
tasks, it differs from typical sensory tasks in important
respects. Unlike typical sensory integration tasks where
the source of cue uncertainty is sensory, the location
cues in this task have negligible and uniform sensory
uncertainty. Instead, the key imprecision of cues in this
study is external to the nervous system and dictated by
the experimenter. Furthermore, unlike many sensory
integration tasks where there tends to be enough
information in a single trial for the organism to elicit
an independent estimate of the precision of each cue
(Ernst & Bülthoff, 2004), in this study the precision of
each cue must be learned through repeated exposures
across trials. As such, we are also interested in the
learning rate of cue precisions and consequent weights.

Maladaptive strategies

There are a variety of maladaptive strategies that
observers might adopt for this sequential cue integra-
tion task. One possibility is that people may treat all
cues equally, using the unweighted average of the cues
as their estimate. This is essentially what a naı̈ve non-
learner might do if individual cue precisions were not

learned across trials. In our analysis, we compared
human performance to that of a hypothetical observer
who assigns equal weights to the cues.

Another possibility is that, confronted with multiple
cues, people may ignore most of the cues and apply a
stereotypical rule to the remainder. An observer might,
for example, make use of only the first few cues and
ignore the rest, even when the first few cues are the least
precise. Alternatively, they may choose to ignore all but
the last few cues. Such a disposition to greatly
overweight early or late cues would be analogous to
the primacy and recency effects commonly found in
memory tasks (Deese & Kaufman, 1957; Murdock,
1962). Previous work on perceptual averaging of
serially presented items has found a slight recency
effect with later items having greater influence on
observers’ estimates than earlier items (Weiss &
Anderson, 1969). However, more recent work has not
found evidence of differential weighting as a function
of sequential presentation order (Albrecht & Scholl,
2010), especially when corrective feedback is provided
throughout the experiment (Juni, Gureckis, & Malo-
ney, 2010).

Our experiment tests for primacy and recency effects
since each observer participated in both a decreasing
precision condition and an increasing precision condi-
tion. If observers were simply predisposed to over-
weight early or late items, then we should see the same
bias in both conditions.

The last possibility we consider is that people may
select only one of the cues and ignore all of the
remaining cues (the ‘‘veto’’ rule in Bülthoff & Mallot,
1988, or the ‘‘take the best’’ strategy in Gigerenzer &
Goldstein, 1996). Even worse, the choice of which cue
to follow may vary from trial to trial. In order to
evaluate these possibilities, we compared human
performance to an observer who uses only the single
most precise cue. If participants outperform this
baseline strategy, we infer that they are integrating
cues effectively (Boyaci, Doerschner, & Maloney,
2006). ‘‘Effective cue integration’’ indicates that the
observer’s estimation precision exceeds that of the
single most precise cue, implying that the observer is
integrating information from at least two cues.

Cue integration: Theory

Unbiased cue integration

Suppose we have n independent cues to some
unknown value of interest, x. Each cue Xi, i ¼ 1, . . .,
n is an independent Gaussian random variable with
common mean x and possibly distinct variances Vi , i¼
1, . . ., n. We define the precision of each cue to be the
reciprocal of its variance pi¼ 1/Vi. A more variable cue
is less precise, while a less variable cue is more precise.
For the purposes of our experiment, we consider a case
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where the cues are unbiased, independent random
variables. Oruç, Maloney, and Landy (2003) consider a

more general case where the cues may be correlated,
while Scarfe and Hibbard (2011) consider a case where

the cues may be biased.

The observer could potentially apply any rule of

integration to the cues, computing any function x̂ ¼
f(X1, . . ., Xn) and taking the result x̂ to be an estimate of

x (see Oruç et al., 2003). We impose one restriction,

however, that the expected value of the estimate be
unbiased: E[x̂] ¼ x. Among the unbiased rules of

integration, we seek the one that maximizes the
precision of the resulting estimate or, equivalently,

minimizes its variance.

Optimal cue integration

In the Gaussian case, the unbiased rule of integration
that maximizes precision is a weighted average of the n
cues

x̂ ¼
Xn

i¼1
wiXi ð1Þ

with weights w1þ . . .þ wn¼ 1, as specified below. The
resulting estimate x̂ in Equation 1 is unbiased

E x̂½ � ¼
Xn

i¼1
wiE Xi½ �¼ ð

Xn

i¼1
wiÞx ¼ x: ð2Þ

Moreover, since the cues are independent random

Figure 3. Cue precisions and optimal weights. A. The seven cues were drawn from seven different Gaussians centered on the hidden

target. The probability density functions of the seven Gaussians are plotted, coded in color. The legend specifies the relative variances of

the seven distributions. B. The optimal weight of each cue is proportional to its precision (reciprocal of variance). In one condition the cues

were presented in order of decreasing precision, in the other, in order of increasing precision. We plot optimal cue weights versus

temporal position for both conditions of the experiment. The color codes agree with those in panel A. The cue precisions and consequent

variances were chosen so that the cue weights decreased and increased linearly.
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variables, the precision of the resulting estimate is
(Oruç et al., 2003)

pðx̂Þ ¼
Xn

i¼1

w2
i

pi

 !�1
ð3Þ

where the choice of weights wi that maximizes precision
can be shown to be (Landy et al., 1995)

wi ¼
pi

pi þ � � � þ pn
: ð4Þ

By substituting Equation 4 into Equation 3, we find
that the precision of the resulting estimate, when
integrating cues optimally, is simply the sum of the
precisions of the individual cues: p(x̂) ¼ p1 þ . . . þ pn.
The resulting estimate must therefore have a higher
precision than any of the individual cues (Oruç et al.,
2003, appendix), and the ideal observer who integrates
cues optimally will always achieve a greater precision
than an observer who uses only one of the cues, even if
it’s the one with greatest precision. Any other unbiased
rule of integration, linear or nonlinear, will result in
estimates whose precisions are less than that of the
weighted linear rule of integration in Equations 1 and 4
(Oruç et al., 2003, appendix).

A numerical example

Suppose, for example, that n¼ 2 and the two cues X1

and X2 have variances 2 and 1, respectively. Then their
precisions are p1 ¼ 0.5 and p2 ¼ 1, and the optimal
weights assigned by Equation 4 are w1¼1/3 and w2¼2/
3. The more precise cue gets twice the weight of the less
precise one. The precision of the estimate resulting
from optimal cue integration is the sum of the
precisions: 1.5. The variance of the resulting estimate
is simply the reciprocal of the sum of the precisions: 1/
1.5 ¼ .666, which is less than that of either of the
individual cues and, in fact, the lowest variance possible
for any unbiased estimator.

Effective cue integration

An observer may not integrate cues optimally but
still derive a benefit from integrating the cues. Suppose
that in the numerical example above the observer
decides to give the cues equal weight such that w1¼ w2

¼ 0.5. Then the precision of the resulting estimate based
on Equation 3 is:

pðx̂Þ ¼ w2
1

1

p1
þ w2

2

1

p2

� ��1

¼ 1

4
ð2þ 1Þ

� ��1
¼ 3

4

� ��1
¼ 1:333: ð5Þ

Even though this choice of equal weights did not reach

the maximum possible precision of 1.5, the observer has
achieved a greater precision than could be achieved by
relying on any one cue alone. Boyaci et al. (2006) refer
to this sort of cue integration as effective cue
integration: the precision of the observer’s estimate is
greater than the precision of any single cue:

pðx̂Þ.max p1; � � � ; pnf g: ð6Þ
We can be certain that an observer who satisfies this
condition is in fact integrating cues (Oruç et al., 2003).
While optimal cue integration entails effective cue
integration, one can integrate cues effectively without
integrating them optimally.

In this study, we compare human performance to
ideal, testing whether they integrate cues with weights
that achieve the maximum precision possible (optimal
cue integration), and also test whether they integrate
cues to achieve a greater precision than that of the most
precise cue (effective cue integration).

Methods

Observers

Ten observers at New York University participated
in two experimental sessions on separate days. None
were aware of the purpose of the experiment and all
were paid $10 per hour for their participation.
Additionally, they received a performance-based mon-
etary bonus (anywhere between $0 and $10 per session)
as described below.

Apparatus

Stimuli were displayed on a 51.8 cm by 32.4 cm LCD
monitor (Dell 2407WFP-HC) at a resolution of 1920
pixels by 1200 pixels with a 60-Hz refresh rate. A chin
rest was used to maintain the viewing distance at 73 cm.
Observers responded using the mouse and keyboard as
described below. The experiment was run using
MATLAB and the Psychophysical Toolbox and Video
Toolbox libraries (Brainard, 1997; Pelli, 1997).

Stimulus and design

The experimental stimulus consisted of seven
vertical tick marks (21 pixels high by 3 pixels wide)
presented one at a time in rapid succession (150 ms
duration with 150 ms spacing between ticks) drawn
from seven different Gaussians that shared a common
mean but had different variances. Figure 3A shows the
probability density functions for the seven cues. The
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legend indicates the relative variance of each distri-
bution (the standard deviations of the distributions, in
pixels, and rounded to two decimal points were 61.97,
66.56, 72.36, 80.0, 90.71, 107.33, 138.56, respectively).
Note that the variance of the worst cue (138.562 ¼
19,200) is five times greater than the variance of the
best cue (61.972¼3840). This means that the worst cue
has one-fifth the precision of the best cue, and,
consequently, it should ideally receive only one-fifth
of the weight that the best cue receives (to maximize
precision and expected gain).

Figure 3B shows the ideal weighting function for our
task, which either increases or decreases linearly
depending on the presentation order of the cues
(increasing weights for increasing precision; decreasing
weights for decreasing precision). Importantly, notice
that the ideal weight assigned to each cue is the same in
both conditions and that the ideal weight assigned to
the most precise cue (0.2381) in both conditions is five
times greater than that assigned to the least precise cue
(0.0476), which, as noted above, is commensurate with
their respective precisions.

The two conditions were run in separate sessions
approximately two weeks apart, and their order was
counterbalanced across observers. Each session lasted
approximately 1 h and 20 min and consisted of 12
practice trials divided into three blocks followed by 600
experimental trials divided into 20 blocks. Observers
were encouraged but not required to rest between
blocks.

Procedure

Throughout the experiment, there was a horizontal
reference line displayed at the center of the screen that
represented the horizon along which the ‘‘oil well’’
could be drilled. Observers started each trial by
pressing the space bar with their non-dominant hand.
Upon pressing the space bar, a vertical response cursor
would appear at a random location toward the bottom
of the screen. Observers were prevented from adjusting
the on-screen cursor until after the experimental ticks
for a given trial were presented.

The location of the cursor at the start of the trial had
no bearing on where the experimental ticks would
appear, and we emphasized this point to the observers
during the practice period. To be sure that observers
were not using the random starting position of the
cursor to guide their response, we checked whether
there was any correlation between their final response
and the initial position of the cursor. The correlation
coefficient was just 0.002 and not significant. In
contrast, there was a significant correlation of 0.98
between their final response and the true best location

for the well, which corresponds to the common mean of
the seven Gaussians from which the ticks were drawn.

As mentioned above, the common mean of the seven
Gaussians was horizontally jittered from trial to trial.
The jitter, which was drawn from a uniform distribu-
tion on the interval [-400,400] in pixels, was very large
compared to the observers’ estimation variance (with
standard deviation 47.78 pixels) and to that of the
spread of the seven Gaussians (maximum 138.56
pixels).

As shown in Figure 2, the first experimental tick
appeared 500 ms after the start of the trial. Each tick
flashed momentarily for 150 ms bisecting the horizontal
reference line, and there was a 150 ms interval between
flashes. Hence, the total time from the appearance of
the first tick until the disappearance of the last tick was
7 · 150 ms þ 6 · 150 ms ¼ 1950 ms.

Once the last experimental tick disappeared, observ-
ers moved the cursor using their dominant hand and
clicked on the reference line to mark their estimate of
the best location for the well. After placing the cursor,
they could make further adjustments to their estimate
by right-clicking and left-clicking the mouse to move
the cursor right or left one pixel at a time. They were
obliged to make at least one adjustment with the mouse
button even if they were content with their initial
estimate. If they were content with their initial
placement, they could simply click right and then left,
or vice versa, to satisfy the adjustment requirement and
end with their initial estimate. Once their adjustment
was complete, observers pressed the space bar to record
their estimate and get feedback as explained below.
After receiving feedback, observers pressed the space
bar again to initiate the next trial.

Monetary reward and feedback

Observers were given immediate visual feedback on
each trial indicating the spatial deviation of their
estimate from the true best location for the well. The
response cursor was a purple tick mark surrounded by
a blue rectangle. After pressing space bar to record
their estimate of the best location for the well, the
purple tick would change position to indicate the true
best location for the well (which was at the common
mean of the seven Gaussians from which the ticks were
drawn), while the blue rectangle remained in place
indicating the observer’s estimate.

Observers were informed that they could win an
extra dollar on each of 10 trials chosen at random at
the end of each session. The chances of winning the
extra dollar on a trial decreased by 1% for each pixel
that the observer’s estimate deviated from the true best
location for the well. If their estimate was dead on (and
the purple tick did not jump), then the chances of
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winning the extra dollar for that trial, if it were chosen,
was 100%. If their estimate was off by 17 pixels (and
the purple tick jumped 17 pixels to the right or to the
left), then the chances of winning the extra dollar for
that trial decreased to 83%. However, if their estimate
was off by 100 pixels or more, then the chances of
winning the extra dollar for that trial was 0%. Thus,
observers were given an incentive to minimize the
spatial deviance of their estimates from the true best
location for the well, with a maximum potential reward
of $10 per session.

Concurrent with the jump of the purple tick
indicating the true best location for the well, an integer
between 0 and 100 would appear above the purple tick
indicating the chances of winning the extra dollar for
that trial if it were selected for reward at the end of the
session. While the observer might have trouble
discriminating between being 20 pixels and 23 pixels
away from the target, they should have no trouble
discriminating between feedback integers that read 80
and 77, respectively.

Analysis

The following sections describe our approach to the
analysis.

Cue weights

For each observer and for each condition we used
linear regression to estimate the weight wi assigned to
each of the seven cues Xi using the following equation

x̂ ¼ w1X1 þ :::þ w7X7 þ biasþ e ð7Þ
where x̂ denotes the observer’s estimate and e ; U(0,V) is
Gaussian random error with mean 0 and varianceV. The
error term e captures any sensory or judgment uncer-
tainty while the bias term captures any chronic tendency
that the observer might have to aim either to the left or to
the right away from the best location for the well.

For the unbiased, ideal observer who maximizes
estimation precision and expected gain, the estimated
weights ŵi, i ¼ 1, . . ., 7 should show no patterned
deviation from the optimal weights computed in
Equation 4 and plotted in Figure 3B.

Comparing observers’ cue-weights to ideal

To quantify the overall discrepancy between observ-
ers’ estimated weights and the optimal weighting
function, we measured the sum of the squared
difference between their estimated weights ŵi, i ¼ 1,
. . ., 7 and the corresponding optimal weights wi, i ¼ 1,
. . ., 7 shown in Figure 3B:

Dðŵ;wÞ ¼
X7

i¼1
ðŵi � wiÞ2: ð8Þ

Learning cue weights

At the start of the experiment observers had no
knowledge about the precisions of the cues, except that
some of the cues might be better than others. We
carried out the analyses on successive blocks of data to
see how cue weights changed over the course of the
experiment. It is of particular interest to compare
observers’ rate of learning in our experiment to that of
an ideal learner. Because of the feedback provided at
the end of each trial, an ideal learner with perfect
memory would keep track of the difference between
each of the seven cues Xk

i , i¼ 1,. . ., 7 presented on the
kth trial and the true best location for the well xk that is
given as feedback. This ‘‘perfect memory observer’’
could then estimate the observed precision of each cue
based on the first N trials by maximum likelihood using
the following equation4

p̂N
i ¼

XN

k¼1
ðXk

i � xkÞ2

N

2
66664

3
77775

�1

ð9Þ

and then update the weights of the cues using these
estimated precisions in place of the true pi in Equation
4. We computed this ideal learner by Monte Carlo
simulation using 1000 runs and compared the rate of
learning in this model to the learning performance of
human observers.

Effective cue integration

We also compared each observer’s estimation
precision to that of the single most precise cue to test
for effective cue integration. If their precisions are
significantly greater than that of the most precise cue,
we can conclude that observers indeed integrated
information from more than one cue, since the only
way to have a greater precision than that of the most
precise cue is by integrating at least two cues (Boyaci et
al., 2006; Oruç et al., 2003).

Efficiency

Finally, to quantify performance, we measured
observers’ efficiency, which is the ratio between their
expected reward and the maximum reward possible. We
computed the maximum reward of the ideal observer by
Monte Carlo simulation using 1 million runs.
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Results

Cue weights

Blocked analysis

Figure 4 shows how the mean of observers’ estimated
weights ŵi for each cue changes over the course of the
experiment. These weights were elicited from data in
non-overlapping blocks of 50 trials. Figure 4A (blue
axes) shows results for the decreasing precision

condition, while Figure 4B (red axes) shows results
for the increasing precision condition.

There are three key observations. First, one striking
aspect of the results is how little the weights changed
over the course of the 12 blocks. Second, by and large,
observers’ estimated weights throughout the experi-
ment were greatest for the most precise cue (blue),
followed by the next most precise cue (green), and so on
(irrespective of the presentation order of the cues). This
indicates that observers were sensitive to differences in
the precision of cues, and were able to learn very
quickly the correct ordering for the weights of the cues.
Finally, observers’ estimated weights never quite
aligned with the optimal weights of the cues. This
indicates that even by the end of 600 trials, observers
were unable to assign the optimal weights necessary to
maximize their estimation precision. (See Figure A1 for
individual results.)

Learning cue-weights and comparison to ideal

The black curve in Figure 5 shows the ideal learner’s
D(ŵ,w) (i.e., the summed squared error between the
estimated cue-weights of the ideal learner and the
optimal cue-weights shown in Figure 3B) as a function
of number of trials observed with 95% confidence
intervals. The ideal learner converges to almost optimal
in fewer than 100 trials (1 block ¼ 50 trials).

Figure 4. Blocked analysis of cue weights (group results). A.

Results for the decreasing precision condition in non-overlapping

blocks of 50 trials. B. Results for the increasing precision

condition in non-overlapping blocks of 50 trials. The color-coding

of the seven cues follows the color scheme in Figure 3. The blue

cue is the most precise one, followed by the next most precise cue

in green, and so on. For reference, we placed colored squares on

the right of each plot to mark the optimal weights of the cues. On

the left of each plot we placed colored numerals indicating the

presentation order of the cues.

Figure 5. Comparing trends in cue weights across time to ideal

(group results). We plot the sum of the squared difference

between estimated and ideal weights D(ŵ,w) versus block number

for the decreasing precision condition (blue) and for the increasing

precision condition (red). The values are averaged across

observers and the error bars mark 6 SEM. The black curve

shows the expected convergence for an ideal learner (see text).

Human performance is far from ideal even after 600 trials, and

shows only a slight, non-significant trend toward convergence.
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The figure also shows the mean (6SEM) of
observers’ D(ŵ,w) in non-overlapping blocks of 50
trials, separately for the decreasing precision condition
(blue) and for the increasing precision condition (red).
While the ideal learner converges to optimal very
rapidly, observers’ estimated weights did not converge
to optimal even after 600 trials. We fit lines to
observers’ data in Figure 5 and found no significant
downward trend in either condition (decreasing preci-
sion condition: t(9) ¼ �0.53, p . 0.05; increasing
precision condition: t(9) ¼ �1.12, p . 0.05). This
indicates that while observers learned very rapidly to
bring D(ŵ,w) in the direction of optimal, they were not
able to further reduce D(ŵ,w) as the experiment
progressed, even by the end of 600 trials. (See Figure
A2 for individual results.)

Given the rapid adaptation to the structure of the
task, and the lack of continued learning, we focus in the
remaining analyses on the last 500 trials of each
condition (excluding the first 100 trials of each
condition to allow for any learning at the start of each
session).

Cue weights

Figure 6 shows the mean and 95% CI of observers’
estimated weights ŵi as a function of temporal cue
order for the last 500 trials in each condition

(decreasing precision in blue, increasing in red). The
dashed lines in corresponding colors are the weights
that maximize precision from Figure 3B. Optimally, the
most precise cue should receive five times more weight
than the least precise cue, with the intermittent cues
decreasing or increasing linearly in weight depending
on the condition (Figure 3B). We fit regression lines to
each set of weights using the following equation

ŵi ¼ miþ b ð10Þ
and plot the estimated fit as solid lines in blue (for
decreasing precision condition) and red (for increasing
precision condition).

While it is not always obvious from the individual
results (Figure A3) that the weights follow a linear
trend, the regression fits allow us to test whether there
is any overall trend downward or upward in the
weights. A significant negative slope indicates a
downward trend while a significant positive slope
indicates an upward trend. If, on the other hand,
observers assigned equal weights to cues, we would
expect the slopes in these linear regressions to not be
significantly different from 0. The black, dashed
horizontal line shows the zero slope trend line for a
hypothetical observer who assigns equal weights to the
cues irrespective of their precisions.

Overall, the estimated slopes m̂ of all observers’
trend lines are significantly negative in the decreasing
precision condition (Mean¼�0.017, SD¼ 0.013, t(9)¼
�4.29, p ¼ 0.002) and significantly positive in the
increasing precision condition (Mean ¼ 0.022, SD ¼
0.024, t(9) ¼ 2.97, p , 0.05). As the slopes in both
conditions were significantly different from 0, we can
rule out the possibility that observers were using the
unweighted average of the cues as their estimate.

Furthermore, while the estimated trend lines are not
as steep as those of the ideal observer whose slope m¼
60.0317, all of the observers’ estimated slopes are
significantly greater in the increasing precision condi-
tion than in the decreasing precision condition, t(9) ¼
5.57, p , 0.001. This indicates that, on average,
observers correctly assigned more weight to the more
precise cues irrespective of their presentation order,
though the differential weighting of the cues was not as
great as the 5:1 range that is needed to be optimal.

The pooled data clearly show that observers’
estimated weights trend upwards in the increasing
precision condition and trend downwards in the
decreasing precision conditions. This rules out the
possibility that simple recency or primacy effects are
responsible for the differential weighting of the cues.
Instead, the group analysis indicates that observers do
pick up on and exploit the differing precisions of the
cues, albeit not to the full extent that is needed to be
optimal.

Figure 6. Estimated cue weights (group results). The black

dashed line marks the weighting function of a hypothetical

observer who gives the cues equal weights. The colored dashed

lines mark the weighting function that would minimize prediction

error and maximize expected gain for the decreasing precision

(blue) and increasing precision (red) conditions. The dots and

error bars mark the mean and 95% CI of observers’ estimated

weights for each of the seven cues based on the last 500 trials of

each condition. The solid lines are the least squares fitted lines to

observers’ collective data in the corresponding condition.
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Figure 7. A. Suboptimal but effective cue integration (individual results). The choice of weights that maximizes expected gain also

minimizes the variance of the weighted integration used to estimate the location of the target. We plot the precision (reciprocal of variance) of

observers’ estimates in each condition normalized by the precision of the single most precise cue. A value of 1 would imply that the

observer’s precision is no better than that of an observer who based his judgment on the single most precise cue. A value larger than 1 would

imply that the observer is basing his judgment on more than one cue; i.e., he is integrating cues. We used bootstrap measures to elicit the

95% confidence interval of the precision of each observer’s estimates in each condition. The green line marks the maximum possible

precision of the ideal observer who integrates cues commensurate with their precisions. All observers fell short of optimal, but all exceeded

the precision achievable using only the single most precise cue. Observers integrated cues effectively if not optimally. B. Blocked analysis of

effective cue integration (group results). We plot the precision of observers’ estimates normalized by the precision of the single most precise

cue, now averaged across observers. Half the observers (P1, P3, P5, P7, P9) ran in the decreasing precision condition first (blue) while the

other half ran in the increasing precision first (red). The data points mark the mean (6SEM) of each group’s estimation precision in non-

overlapping blocks of 50 trials. Even in the earliest blocks of each session, observers integrated cues effectively if not optimally. See text.
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Effective cue integration

Suboptimal but effective cue integration

Figure 7A shows each observer’s overall estimation
precision for the last 500 trials of each condition
compared to the precision of the single most precise cue
(black dashed line) and to the maximum precision
attained through optimal cue integration (green solid
line). The error bars mark the 95% confidence interval
of each observer’s estimation precision, computed
through bootstrap resampling (Efron & Tibshirani,
1993) using 10,000 runs.

Overall, observers’ estimation precisions were signif-
icantly greater than the single most precise cue both in
the decreasing precision condition (t(9) ¼ 11.15, p ,

0.001) and in the increasing precision condition (t(9)¼
4.78, p ¼ 0.001). This indicates that observers in our
task integrated cues effectively: they used more than
just the single most precise cue. However their
estimation precisions were significantly lower than the
maximum precision of the ideal observer (who inte-
grates all cues commensurate with their individual
precisions) both in the decreasing precision condition
(t(9) ¼ �24.95, p , 0.001) and in the increasing
precision condition (t(9) ¼�16.11, p , 0.001). Thus,
they were far from integrating all cues optimally. The
errors bars mark which observers in each condition
were less than optimal (all observers in all conditions)
and which were effectively integrating cues (all observ-
ers in the decreasing condition; all but P3, P8, P10 in
the increasing condition).

Based on the relative precisions that are reported in
the legend of Figure 3B, the estimation precision
obtained by integrating the two most precise cues in
either condition is 1 þ 0.866 ¼ 1.866. Some of the
observers had estimation precisions significantly great-
er than that (P1 decreasing, P5 decreasing, P6
decreasing, P7 increasing, P9 increasing). The only
way to obtain such high estimation precisions is by
integrating at least three cues. This is the first
demonstration we know of that observers effectively
integrate more than two cues at a time.

Finally, we analyzed the evolution of observers’
estimation precisions over the course of the entire
experiment. Figure 7B shows how the precision of their
estimates changes with experience. Half of the observers
(P1, P3, P5, P7, P9) ran in the decreasing precision
condition first while the other half ran in the increasing
precision first. The data points mark the mean (6SEM)
of each group’s estimation precision in non-overlapping
blocks of 50 trials. Observers’ estimation precision
gradually increased within each session (particularly in
session 1).However,while there is a general trend toward
improvement, observers’ estimation precision is signif-
icantly lower than the maximum ideal precision of 4.2.

Efficiency

To further quantify observers’ performance, we
computed how efficient they were at earning bonus
money. Remember that observers were instructed to
make as much money as possible. Any deviation from
optimal performance in learning or in integrating cues
could only reduce one’s expected reward. The ideal
observer’s chance of winning $1 on any given trial was
75.9% (SD ¼ 18.2) once they correctly assessed cue
precisions. On the other hand, the mean of observers’
chances across the last 500 trials of each condition was
64% (SD ¼ 26.89), which means that their efficiency
was 0.84. Observers thus lost about 16% of all bonus
money available to them. For comparison, the expected
chances of an observer who made use only of the single
most precise surveying company (single most precise
cue) was 53.4% (SD ¼ 31.2) for an efficiency of only
0.7. If one were to integrate the estimates of the two
most precise surveying companies in an optimal
fashion, one would still only obtain an expected chance
of 64.3% (SD¼26.05) for an efficiency of 0.85, which is
only slightly better than what observers achieved.

Discussion

We began this work by asking how observers
integrate multiple pieces of visual evidence (cues) to
guide their prediction of unobserved quantities in the
environment. Our empirical task was designed to
explore new terrain in the cue integration literature in
four important ways. First, observers in our task had to
integrate cues presented serially in time. This introduced
a memory demand absent from previous visual cue
integration work. Second, our task involved seven cues,
which is more than the two to three cues typically used
in sensory cue integration studies (although, larger cue
sets are more commonplace in the cognitive decision-
making literature, e.g., Gigerenzer & Goldstein, 1996;
Slovic & Lichtenstein, 1971). Third, the precision of the
cues depended on their order of presentation. In one
condition the precision of successive cues decreased
across a trial, in the other it increased. Successful
estimation of the target property thus required observ-
ers to learn individual cue precisions across trials; they
could not be assessed with any accuracy from the
information provided in a single trial. Fourth, the
source of uncertainty was primarily external to the
sensory system. Unlike the cues in typical sensory
integration tasks, there are no imperfections here in the
mapping of the observed cues to the physical world.
Instead, the observer’s task is to estimate an unobserved
parameter of the cue-generating process.
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Overall, our results indicate that observers are able
to (imperfectly) learn the precisions of cues across trials
and integrate location cues across time in a flexible and
effective manner. The majority of our observers
adapted to the environmental structure of the decreas-
ing and increasing precision of the cues. This result
ruled out simple arguments concerning primacy or
recency biases in the sequential processing of visual
information (Deese & Kaufman, 1957; Murdock, 1962;
Weiss & Anderson, 1969). Instead, our results demon-
strate flexibility in how observers weight visual
information when making decisions.

One study related to ours is that of van Mierlo,
Brenner, and Smeets (2007). They asked observers to
detect changes in slant, introducing brief delays
between changes in the binocular and monocular cues
defining slant. They found that observers continue to
integrate monocular and binocular cues even with
differences in timing up to 100 ms. However, van
Mierlo et al. (2007) conclude that neural latency
differences of tens of milliseconds between cues are
irrelevant because of the low temporal resolution of
neural processing. We, in contrast, introduce differenc-
es in timing on the order of seconds and cannot explain
evidence of cue integration by low temporal resolution
in neural processing.

Future investigation is needed, however, to determine
whether observers’ ability to learn the differential
precisions of sequentially presented cues is limited to
instances where cue precisions simply increase or decrease
with time or whether observers can (eventually) learn
more complex mappings between precision and time.

One promising direction for future research would
be to determine how changes in the timing of the
presentations of the tick marks affects cue integration
and learning of cue precisions. If we decrease the time
between ticks in a trial, do observers learn cue
precisions more rapidly across trials? Or less rapidly?
And, conversely, what if we increase the time between
ticks? Such manipulations will allow us to characterize
working memory contributions implicit in integrating
discrete cues across time.

Optimal and effective cue integration

As noted in the Introduction, cue integration can
meet the standard of effective (i.e., better performance
than the single most precise cue) while still falling short
of optimal performance. While all observers demon-
strated effective cue integration, all observers fell short
of optimal cue integration even after extensive training
(with feedback). This result is notable since a large
body of work has accumulated suggesting that human
observers can integrate cues in a near-optimal fashion
even without corrective feedback (Jacobs, 2002; Landy,

Maloney, Johnston, & Young, 1995). Indeed, a
continuing tension in the field is that studies of
cognitive decision-making and learning routinely find
sub-optimal performance compared to an ideal observ-
er (Berretty, Todd, & Martignon, 1999; Gigerenzer &
Goldstein, 1996; Kahneman, Slovic, & Tversky, 1982),
while observers in naturalistic visual perceptual tasks
show evidence of near-optimal performance (Ernst &
Banks, 2002).

One interesting question is the source of this
suboptimality. While the seven cues in our task were
independent from one another, it is possible that
limitations in working memory led to loss of cue
information or introduced correlations in the represen-
tations of the objectively independent cues. If that were
the case, then the expected precision of their combined
estimate would be less than the sum of their individual
precisions (Oruç et al., 2003). This then could
potentially explain our finding of sub-optimality.

Another interesting speculation is that our finding of
sub-optimality stems from the fact that the cues in our
task were not simultaneously visible. Cue integration
might be optimal for simultaneously accessible cues,
but not for cues that are presented one at a time. This
account is consistent with a bottleneck introduced via
the storage or retrieval from visual short-term memory.

A final possibility is to explore these results with
respect to mechanisms of sequential learning. For
example, Gureckis and Love (2010) describe a model
of sequential prediction in which cues are buffered in
time and used to guide future prediction. Weights are
learned from the memory buffer based on the predictive
value of the cue for reducing prediction error (similar to
a type of Rescorla-Wagner [Rescorla & Wagner, 1972],
but learning through time). Such a model could provide
a broad, mechanistic framework within which to
explore the consequences of forgetting, selective encod-
ing, and limitations in feedback processing that might
have led to stable, suboptimal performance in the task.

Conclusion

In a sequential cue integration task using stochastic
location cues, we found that people adapted their rule of
integration based on the relative precisions of individual
cues. This indicates that people could (imperfectly)
learn the precisions of stochastic cues through repeated
exposures across trials. However, performance re-
mained well below optimal even after 600 trials with
feedback. At the same time, our results found strong
evidence of effective cue integration in that all observers
integrated information from more than one cue in
guiding their estimates. Moreover, our results are the
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first findings we know of to demonstrate that observers
effectively integrate more than two cues at a time.

Given the many differences between our task and
typical sensory cue integration tasks, we hesitate to
generalize across the two kinds of tasks. Nevertheless, it
is possible that maximum precision (minimum vari-
ance) cue integration is a fundamental human capabil-
ity expressed across many dissimilar tasks, sensory and
cognitive.
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Footnotes

1We use the term ‘‘precision’’ to refer to the
reciprocal of variance. More generally, the term
‘‘precision matrix’’ refers to the matrix inverse of a
covariance matrix (Dodge, 2003). The term ‘‘reliability’’
is sometimes used as a synonym for precision in the
sensory cue integration literature (e.g., Backus &
Banks, 1999).

2To simplify notation, we denote variance by V
rather than the more typical r2.

3To simplify the presentation, we ignore the possi-
bility of correlation between cues and between envi-
ronmental and sensory noise. See Oruç et al. (2003).

4Many different learning algorithms based on the
observed errors could be used instead. However, the
point we will make is that the performance of an ideal
observer converges to close to ideal in as few as 100
trials. The lack of convergence we observe in human

data renders moot any precise comparison between
human learning and ideal.
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Appendix A

In this appendix we present each observer’s individual

results for many of the analyses that we conducted.

Figure A1. Blocked analysis of cue weights (individual results). This figure shows the blocked results of each observer’s estimated

weights. This complements the group results in Figure 4.
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Figure A3. Estimated cue weights (individual results). This figure

shows each observer’s estimated weights based on the last 500

trials of each condition. The solid lines are the least squares fitted

lines to each observer’s data in the corresponding condition (R2

across all observers and conditions ranges from 0.318 to 0.682).

This complements the group results in Figure 6.

Figure A2. Comparing trends in cue weights across time to ideal

(individual results). This figure shows the blocked results of each

observer’s D(ŵ,w) for the decreasing precision condition (blue)

and for the increasing precision condition (red). Note that the y-

axis for P8 is different from the rest of the observers to allow us to

show an outlier point in block 5. This complements the group

results in Figure 5.
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