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Abstract

Suspense is an affective state that contributes to our enjoy-
ment of experiences such as movies and sports. Ely, Frankel,
and Kamenica (2015) proposed a formal definition of suspense
which depends on the variance of subjective future beliefs
about an outcome of interest (e.g., winning a game). In order
to evaluate this theory, we designed a task based on the card
game Blackjack where a variety of suspense dynamics can be
experimentally induced. By presenting participants with iden-
tical sequences of information (i.e., card draws), but manip-
ulating contextual knowledge (i.e., their understanding of the
rules of the game) we were able to show that self-reported sus-
pense follows the predictions of the model. Follow-up model
comparison further showed an advantage for the “suspense as
variance of future beliefs” account over a number of alterna-
tive definitions of suspense, including some that depend only
on current uncertainty (not the future). This paper is an initial
attempt to link aspects of formal models of information and
uncertainty with affective cognitive states.
Keywords: suspense; affect; prediction; expectation; proba-
bilistic modelling

Introduction
Suspense refers to sensations of hopeful or anxious anticipa-
tion. These familiar affective states often precede the revela-
tion of important information—exam results, paternity tests,
election outcomes and so forth. However, we also feel sus-
pense in situations where there are no direct personal conse-
quences. For example, children enjoy listening to stories that
happen in imagined kingdoms, adults spend time watching
televised sports, and Hollywood movies are a multi-billion
dollar industry. A key feature of these experiences is that in-
formation is incrementally revealed over time to the observer,
often with the goal of building anticipation and suspense. The
goal of this paper is to empirically study the relation between
self-reported feelings of suspense and the dynamics of infor-
mation and uncertainty.

Suspense as the variance in future beliefs
A recent theory in the economics literature proposes that sus-
pense can be explained as an increasing function of the “vari-
ance of future beliefs” (Ely et al., 2015). Here the beliefs refer
to the probability of a significant outcome (e.g., which team
will win a game) that is updated in time with information as
an experience unfolds. People are assumed to also estimate
how their belief may change in the future. For example, if a
doctor arranges to call a patient at a particular time with test
results, in the period leading up to the phone call the patient
might expect that their belief about their health could soon

change (although they may not know what they will learn).
Conditioned on the information one expects to receive, if the
subsequent future beliefs would be very different from one
another they would be said to have high variance. For exam-
ple, if the test the doctor performed was routine, the patient
would not expect their future knowledge state to change much
after the call (low variance). As a result they would experi-
ence low levels of suspense. In contrast, if the test was a can-
cer screening, then the call might either alter the person’s life
or leave them reassured (high variance), and thus they would
experience high levels of suspense in that moment.

To formalize these intuitions, we assume belief change is
Markovian in that a viewer’s subjective belief µ about some
outcome evolves over a series of discrete time points t, such
as individual points in tennis, card draws in a game, or time
passing in a movie. At each time point, relevant informa-
tion may be encountered and people update their beliefs µt
(e.g., by Bayesian updating). In addition, viewers also an-
ticipate future information using their understanding of the
situation. For example, a viewer might anticipate that their
favorite team will score on the next play or that the opposing
team will score, each representing a state s. The state s has
a probability of being realized P(s) and will result in a fu-
ture belief µs

t+1. The variance among these beliefs indicates
how different the future might be, and therefore how much
suspense might be evoked.

Formally, Ely et al. defined the momentary suspense at
time t, St as:

St = Es[(µs
t+1−〈µt+1〉s)

2]

= Es[(µs
t+1−µt)

2]

= ∑
s

P(s)(µs
t+1−µt)

2
(1)

and we adopt the same notation throughout this paper.
Note that the term (µs

t+1−µt)
2 may be also interpreted as a

metric of variance of belief change or “surprise” that follows
learning a piece of information. As a result, the value, St
can be also be interpreted as the expected future surprise or
expected future belief change from the next time period.

Figure 1 gives a graphical overview of the model applied
to a hypothetical tennis game. Here µ is the probability of
winning the game (µ = 1 if team A wins and µ = 0 if they
lose), each point is one time step, and s is whoever wins the



Figure 1: Demonstration of the belief trajectory during watch
tennis games and the related suspense predicted from our
model. Details see the main text.

next point. In the center of Figure 1 we show the unfolding
of belief about who will win for two different games (A and
B) with the x-axis representing time. The beginning of both
games is not very suspenseful, since whoever wins the first
few points has little impact on predictions about the final out-
come. However, the end of the game A is more suspenseful
since whoever wins a point will greatly swing the final out-
come, while game B is less suspenseful since one side has
already virtually secured victory.

An experimental test of the theory
Ely et al. (2015) articulated the basic outline of the theory de-
scribed above and explored a number theoretical analyses of
the optimal structure for games to maintain suspense. How-
ever, to our knowledge, this operational approach to suspense
has not yet been examined empirically. We propose that a
useful behavioral paradigm for testing this theory needs to
have at least two features:

1. The experiment context should be quantifiable in a proba-
bilistic model. This tends to exclude tasks like reading sto-
ries and watching movies because it is not trivial to convert
these complex situations into accurate probability models.

2. The experiment paradigm should allow the decoupling of
the external stimulus and internal belief. In most prior
work, changes in suspense are always confounded with in-
cidental features of the stimuli. To validate the belief-based
account of suspense, the ideal experiment would manipu-
late an observed internal belief through some prior knowl-
edge while holding other aspects of the stimulus and task
identical.

With these criteria in mind, we designed a card game re-
lated to the classic casino game Blackjack. Participants are
asked to draw cards from a small deck with a known distribu-
tion of cards and report their moment-by-moment suspense.
Intuitively, suspense builds in the task when the sum of the

drawn cards approaches a boundary value (21 in Blackjack).
If the sum exceeds or hits this value the game is lost. Be-
cause the distribution of cards and the probability of drawing
any card can be determined exactly, the game is an ideal test
bed for exploring information-theoretic models of suspense.
In addition, the game is relatively fun, intuitive, and easy to
explain to participants.

To address the second concern from above, participants
were given one of two different rules for how the game would
be scored. In one version, the game was lost anytime the sum
of the cards drawn so far met or exceeded the boundary value.
This is the traditional concept of “bust” from Blackjack. In a
second version, the game was lost only if the sum met or ex-
ceeded the boundary value on the final draw of the game. Due
to the presence of negatively valued cards, it was possible for
the sum to exceed and then return to safety. The differences
between these two rules allows us to compare identical se-
quences of cards, but to modulate if a given card draw was
more or less suspenseful about the game outcome according
the the Ely et al. theory. To optimize the power of our design,
we used a computer-aided method to search for best rules,
card decks, and card sequences that result in strong predicted
suspense differences under the two rules.

Methods
Participants 263 people (113 female), age 36.7±20.4
(mean±SD) were recruited from Amazon Mechanical Turk
using psiTurk (Gureckis et al., 2016) and paid 90 cents (60
cents of this was a bonus that in actuality was the same for all
participants). The task took 12±3 minutes to complete.

Procedure Participants were told that we were interested in
their feelings of suspense while playing a simple card game.
Each participant went through an extensive tutorial covering
the rules of the game, and could only continue if they cor-
rectly answered a series of comprehension questions. They
then played two rounds of training games which were identi-
cal to the real games except they were told there would be no
bonus. After completing these tasks, participants played a se-
quence of three games with a $0.60 bonus payment for each
game that was won (as describe below, all participants won
one game). Afterwards they answered a questionnaire about
their strategies and about their perception of the task.

Similar to Blackjack, in each round of a game, the player
draws cards from a deck of nine cards. To increase the trial-
by-trial suspense dynamics, we use a two-step process for
choosing each card: first, the participant sees the animation
of nine cards shuffling (Figure 2A); next, the first two cards
at the top of the deck were selected (Figure 2B); next, the par-
ticipant uses the keyboard to spin an animated wheel which
(depending where it lands) decides the identity of the final
card (Figure 2C). The wheel was programmed so that it spins
more when the participant presses the key longer but, un-
known to subjects, the spinner always ends up selecting a
predetermined card. The purpose of the spinner was to give



Figure 2: The game interface. a) Card shuffle is an anima-
tion that the participant cannot control. b) Participants see
the selected card pair and are probed about their suspense on
a scale of 1-5. c) Participants press and hold a key to spin
the animated wheel. d) When the wheel stops one of the two
selected cards is chosen. The whole process repeats until the
game has ended.

participants a feeling of control and chance thus they do not
lose interest early, although in fact the sequence of cards to
be chosen was fixed for the purposes of experimental control.
After a card is selected the participant’s current card total (the
sum of the face value of all of the cards they have drawn so
far) was automatically updated in a graph at the top of the
screen (Figure 2D).

To measure suspense, after the two candidate cards are
shown and before spinning the wheel, we directly asked the
participant to rate their current suspense with the keyboard
from number 1 to 5 where 1 means no suspense and 5 means
very suspenseful. Previous studies on suspense have also
chosen a 7-point scale (Gerrig & Bernardo, 1994; Knobloch-
Westerwick, David, Eastin, Tamborini, & Greenwood, 2009)
and 11-point scale (Comisky & Bryant, 1982; Cupchtk, Oat-
leyb, & Vorderee, 1998), yet we are unaware of any sys-
tematic comparison of different response scales for suspense
measurement. No other instructions were given about the use

of the scale. However, we asked participants to report how
they personally defined suspense in the post-task question-
naire.

Implementing the belief updating model To calculate the
belief µ (probability of winning) at a given moment t, we
use an exact enumerative strategy. We first enumerate all the
possible future card draws remaining in the game according
to the known card distribution of the deck. Summing these
values, we get the predicted card sum probability. The win-
ning probability calculation is rule-dependent: if the game is
played according to the bust rule, we get the card sum dis-
tribution for one future step, keep the surviving card sums,
continue to the next step and so forth until the game end. If
the rule is no-bust (i.e. only the sum of cards at the end of the
game matters), we directly calculate the card sum distribution
at the end of the game and count the proportion of winning
relative to losing sums.

Since the suspense is reported after the pair of possible
cards are shown, we assume that suspense is the variance of
future probabilities of winning after spinning the wheel and
the card being finally drawn. Given that the wheel has equal
area for both options, the probability of both future states are
equal: p(s) = 0.5. The suspense prediction can then be cal-
culated utilizing the equation 1.

Design We will introduce the design of card sequences,
then the condition and counterbalance structure.
Belief manipulation: Model-based stimuli design. One key
aspect of the theory is that suspense is the result of an ac-
tive prediction about future stimuli and future beliefs, not
the mere reaction to current stimuli. To test this, we looked
for rule-dependent differences in suspense responses for the
identical card sequences. Given the inherently noisy nature
of self reports, we looked for sequences with large predicted
differences by maximising a score:

score(seq,deck, rulepair) = Srule1 +Srule2

−α · r(Srule1,Srule2)
(2)

where α is a positive weight constant and r(·) is Pearson’s
correlation coefficient. The first two terms ensure the average
suspense level is not too low while the third encourages anti-
correlation between the suspense trajectory under two rules.
We set α to a positive constant that makes the two terms have
similar magnitude.

We searched the space of rules by generating 5000 ran-
dom combinations of deck and card sequence valid under
both rules and scoring them, then filtered with restrictions
to ensure the game also feels like plausible random draws
from the deck (details on Github). The result of this search
was a set of 3 deck/card sequence combinations that evoke
strongly different suspense trajectories under two rules: Bust
with a bound of 7—i.e., the card sum should never exceed
7—and No-bust game with a bound of 3—i.e., the sum of
cards should not exceed 3 at the end. The full sequences are
shown in in Figure 3a.

https://github.com/tree-pi/zhiwei_Todd_rotation


Participants were randomly assigned to one of the two rule
conditions. Two of the games were selected from high sus-
pense 1-3.

Besides sequences with interesting suspense dynamics, we
also designed two no suspense games where the card pairs
have similar or identical values, or values that are non-
consequential to the games outcome (Figure 3, ”no suspense”
1-2), thus should intuitively induce low suspense. According
to Ely et al. model, the predicted suspense at every point in
these games is zero.

Task duration and manipulation. Each participant was as-
signed to one rule condition (rule was a between subject ma-
nipulation) and played two rounds of training games (with no
bonus regarding the game consequence) then three rounds of
gambling games. This is to make the task short enough to
avoid boredom. Among the three rounds, two are of high
suspense and one was a no suspense game. The order of
games were all counterbalanced. The sign of cards and req-
uisite bound values were also counterbalanced (for example,
“cards sum must not exceed 3” was flipped to “card sums no
smaller than -3” for half of participants).

Results

Given that each subject may use the scale differently, we z-
scored the raw suspense ratings for each subject for all ana-
lyzes except the likelihood analysis. We also collapsed across
the counterbalanced conditions of positive and negative card
values. Figure 3 shows a detailed summary of the model
predictions and point-by-point empirical suspense ratings for
each of the games.

To first assess if the no suspense and high suspense game
type altered people’s ratings we ran a paired t-test for each
participant’s averaged suspense rating from the no suspense
vs high suspense games. The suspense level in the high sus-
pense games (0.1± 0.3, Mean ± SD) is significantly higher
than the no suspense games (−0.7±0.7): t(262)= 14.18, p<
.001, verifying the basic effectiveness of this very heavy-
handed manipulation. Visual inspection of Figure 3 confirms
this as well. Participants responded with the lowest increment
on the scale for 71.9% and 53.4% of the two no suspense
games.

To study the direction and magnitude of suspense differ-
ences for identical card sequences under different rules, we
computed the average z-scored rated response for each point
in each of the high suspense games and calculate the differ-
ence between in the two rules, comparing this empirical dif-
ference to the difference in suspense generated by the model.
In Figure 4 we see that most point differences are in the same
direction (quadrant 1 and 3). The self-reported suspense dif-
ference has an correlation coefficient of r = 0.80 (p = 0.01)
with the model with zero free parameters which is impressive
given the inherently noisy measurements of self-reported sus-
pense.

Alternative models
So far we have focused on the formulation of suspense pro-
posed by Ely et al. (2015). In this last section we explore
alternatives that may also capture the empirical patterns in
suspense.

Alternative probability distance metrics To measure the
expected belief change, Ely et al used a squared distance be-
tween probabilities while alternative metrics such as informa-
tion gain and absolute change are common in other contexts
(Nelson, 2005). It is unclear in the context of suspense judg-
ment which metrics will best describe people, thus we explore
these alternatives.

In the Ely et al model the suspense is defined with an L-2
norm distance for belief update:

SL2 = E[(pt+1,i− pt)
2] (3)

where i = 1,2 for each possible card to be drawn and E[·]
denotes the average over i.

We explore alternative metrics to quantify the belief update
with a KL norm:

SKL = E[KL(pt+1,i, pt)] (4)

an information gain norm:

SIG = E[IG(pt+1,i, pt)] (5)
= E[H(pt+1,i)−H(pt)], (6)

and an absolute error norm

SL1 = E[abs(pt+1,i− pt)] (7)

Uncertainty The second theoretical proposal is that people
may feel more suspense simply when they have high uncer-
tainty or the estimated chance of winning is close to 1/2. In
studies of drama, to keep the story captivating, it has been
proposed that “the protagonist and the obstacles he encoun-
ters must be fairly evenly matched” (Mabley, 1972). Also in
the realm of psychology, uncertainty has been found to sus-
tain attention since people demand the reduction of uncer-
tainty (Berlyne, 1960). By looking at our post-task question-
naire, we also found that around 10% of participants reported
they define suspense with uncertainty (although it is unclear
whether they use this term in the mathematical sense).

Uncertainty should be the highest when the probability of
winning is 0.5 and lowest when it is 0 or 1. To capture this
idea, we use the entropy of the belief distribution:

Suncertainty = H(pt) (8)

Suspense when close to losing The last alternative theory
is that people may feel more suspense if the negative outcome
is very likely to happen or the estimated chance of winning is
close to 0. Previous studies in film narratives (Comisky &
Bryant, 1982) and sports viewing (Knobloch-Westerwick et
al., 2009) both empirically found that when there is a bigger



●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

1

2

3

4

5

1

2

3

4

5

Su
sp

en
se

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

No suspense 1 No suspense 2 High suspense 1 High suspense 2 High suspense 3

−5

0

5

10

0 0-6-5 3 -2

-6 -5 -3 -3 0 0 1 2 5

C
ar

d 
co

un
t

N
o 

bu
st

De
ck

& 
dr

aw
Bu

st

b)

a)

4 35 5 2 1

-5 -1 1 2 2 3 4 5 5

7-2-1 1 3 3

-6 -3 -2 -1 1 3 3 4 7

-5 40 1 6 -7

-7 -5 -1 0 1 3 4 5 6

3 2-6 2 0 4

-6 0 2 2 2 3 3 4 4

Figure 3: a) Stimuli: Panels show the five games; red indicates the bust region for Bust rule and green indicates win region
for No-bust rule. The card pair at each turn is shown on x-axis with final draw in gray and the full game deck is shown below.
Black lines show the actual score and dotted lines show potential score if the alternative card is drawn. b) Results and model
predictions: Black circles show M±SE for participants with rule type separated by row. Blue triangles show Ely et al. (2015)
predictions scaled to the full response range.
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pense differs in the direction the model predicted differences
for points in the 1st and 3rd quadrants.

chance for the unwanted outcome to happen, more suspense
is felt. In our data we also found this hint: for example, in
the two no Suspense games, people feel more suspense in no
Suspense 1 (−0.9±0.5), where the chance of losing is always
low than in no Suspense 2 (−0.5±0.7) where the card total is
always close to the bound and it indeed ends up losing. The
difference of average suspense between the two games being
significant (t(261) = −4.98, p < 0.01) indicates that people
may feel more suspense when there is a high chance of losing.

We introduce two models to estimate this “pessimistic” be-
lief about how close one is to losing the game. First, consider
a heuristic: how far is the largest of the two cards drawn from
the deck is from the boundary:

StoBound =

{
1−|〈V 〉t+1,i−bound|/M

0, if| 〈V 〉t+1,i−bound|> M (9)

Where | · | denotes absolute value, i = 1,2 representing the
card pair and M is the maximum card value (7 in the cur-
rent design). This piecewise definition assigns zero suspense
when the current card sum is too far away from the boundary.

The other model is belief-based which is how big is the
probability of losing:

SpLose =

{
1− pt , ifpt > 0

0, ifpt = 0 (10)

pt = 0 represents there is no hope of winning at all thus no
suspense.

Likelihood model for fitting discrete responses Fitting
the raw suspense scores requires an additional response



Table 1: Model Fits
Aggregate Individual N best fit

L2 (Ely et al) 8.70 0.82 7
L1 10.06 1.00 131
KL 5.97 0.23 13
IG 8.62 0.83 14
toBound 6.65 0.03 40
pLose 8.36 0.20 6
uncertainty 7.47 0.55 52

Note: 1st column: Log likelihood improvement for each fit relative
to baseline for average subject judgments (rounded into an integer

response). 2nd column: Mean individual log likelihood
improvement under optimal shared parameterization. 3rd column:
Number of subjects best fit by each model under optimal shared

parameterization. Best fitting model indicated in bold

model to convert the continuous suspense predictions to a in-
teger output in the range of 1 to 5. We treat the response as a
multinomial sampling process, with the probability of choos-
ing each value related to a beta distribution:

pk =
∫ k/5

(k−1)/5
pbeta,k = 1,2, . . . ,5 (11)

whose beta parameters are defined such that the mean of
beta distribution is equal to the suspense prediction (scaled
to [0,1]):

pbeta(x) =
xa−1(1− x)b−1

B(a,b)
, (12)

where
a = A∗ S̃+1,b = A∗ (1− S̃)+1 (13)

A ∈ [0,∞), and S̃ is the suspense S rescaled to [0,1].
We define our baseline model where all pk are equal equiv-

alent to choosing each response randomly. All the model log
likelihood results in Table 1 are improvements from this base-
line.

For individual participant data we fit this model with A
determined by fminbound function of scipy package (A ∈
[0, . . . ,15]). We compare this maximum log likelihood to that
from baseline model and summarize over all subjects. The
result of all model comparison is in Table 1.

Our model fitting suggests there is considerable hetero-
geneity in what drives self-reported suspense in this task. The
belief based suspense model with linear belief update dis-
tance (L1 norm) fit best overall, suggesting that Ely et al’s
choice of predictive variance may not be the most natural way
of capturing human suspense. However all of the models we
considered received some support, with the L2 and informa-
tion gain models fitting almost identically. Consistent with
the self reports in which some participants reported suspense
in proportion to their current uncertainty, 20% of individual
subjects were best fit by the uncertainty model, while a fur-
ther and 15% best fitted by the heuristic “distance to bound-
ary” model, indicating another potential heuristic sub popu-
lation distribution.

General Discussion
In this study we designed a paradigm to manipulate the rev-
elation of information about if a player will win a game (and
thus earn a monetary bonus) in order to modulate participant’s
subjective feelings of suspense. We used the model and a
computer aided search to select game sequences and rules
with high predicted differences in suspense. To our knowl-
edge, this is the first such empirical evaluation of the Ely et
al. proposal.

By comparing a range of model variants, we found that
most participants were fit by a model that related the rating
of suspense to the anticipation of belief change, in line with
Ely et al. (2015). However, we also found that belief variabil-
ity predictions may be better explained by potential absolute
(L1) change rather than variance. Heuristic models such as
“probability to an unwanted outcome” also captured subsets
of the participants.

In sum, this study suggests that suspense is systematically
related to meta-cognitive predictions of future belief change.
Such preposterior planning (Raiffa, 1974) issues arise in ac-
tive learning and control contexts. For example, in order
to identify the most useful query, one should consider the
possible answers one might receive under different possible
queries, and how one’s beliefs would change as a result (Nel-
son, 2005). Suspense is thus a quantity that is tantalisingly
closely related to such prospective meta-cognition, yet also
distinctly low level in that it manifests as a reportable affec-
tive state.

Future iterations of our paradigm can be readily adapted
to test other interesting hypotheses about suspense, such as
the influence of (perceived) control, positive or negative re-
wards, or the role of suspense in driving attention or engage-
ment (Bezdek et al., 2015).
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