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Abstract 

Recent work has demonstrated robust learning traps during 
learning from experience – decision-making biases that 
persist due to the choice-contingent nature of outcome 
feedback. In two experiments, we investigate the effect of 
outcome valence on learning trap development. Participants 
chose to approach or avoid category exemplars associated 
with rewards or losses, and, to maximize reward, must learn 
a categorization rule based on two stimulus dimensions. We 
replicate previous findings showing that when outcome 
feedback was contingent upon approaching exemplars, 
people frequently fell into the trap of using an incomplete 
categorization rule based on only a single dimension, which 
was suboptimal for long-term reward. Notably, learning trap 
development was attenuated in an environment with frequent 
loss outcomes, even when participants received explicit 
information about the base rates of gains and losses. The 
implications of these findings for theoretical models and 
future research are discussed. 
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People are often required to learn about the world from 

interacting with their environment, rather than from 

passive observation alone. The ability to learn from one’s 

experiences is critical, for example, for a young child to 

learn which foods they dislike, or about whom they can 

rely upon to provide security. However, in some situations, 

mechanisms that operate in experiential learning can lead 

to the development of persistently suboptimal patterns of 

behavior. The process whereby such suboptimal behaviors 

are developed and sustained has been termed a learning 

trap (Erev, 2014).  

 

 
 

Figure 1: The interaction between experiences, beliefs, and 

decisions in learning trap formation. Since experiences are 

decision-contingent, erroneous initial beliefs cannot be 

corrected when the belief itself leads to the avoidance of 

corrective experience (represented by the “X”). 

 To illustrate how suboptimal behavior can arise from 

everyday experiential learning, consider the example 

illustrated in Figure 1. Here, early experience (e.g., reading 

the first page of a research paper) leads to a more general 

negative belief (e.g., “this is a dull paper”). This in turn leads 

to subsequent selective avoidance (avoiding reading the rest 

of the paper current paper being read) which limits further 

learning about the “true” value of the stimulus). In doing so, 

the learner is protected from further negative experiences. 

However, this behavior pattern also limits the opportunity for 

revising inaccurate beliefs formed early in the learning 

process (e.g., interesting results that appear later in the paper). 

Thus, an interaction between a person’s experiences, beliefs, 

and decisions “traps” the learner into a pattern of behavior 

that, in the long run, is maladaptive for reward and learning.   

 Learning traps thus form an especially stubborn and 

pernicious class of errors in experiential learning, and can be 

observed in maladaptive behavior across a number of 

domains (e.g., Denrell & March, 2001; Fazio, Eiser, & 

Shook, 2004). For example, the hot stove effect (Denrell & 

March, 2001) describes risk aversion as a product of adaptive 

sampling; even if a risky option is positive on average, 

inherent uncertainty in its outcomes means that there will be 

times when recent experience will be negative, often leading 

to the future avoidance of risky options. A similar process is 

also thought to play a role in prejudice formation and in-

group bias (Denrell, 2005; Liu, Eubanks, & Chater, 2015); 

negative biases about outgroups are likely to persist as this 

belief leads to the avoidance of corrective experience. 

The Role of Categories in Experiential Learning 

Everyday learning often involves representing a 

multidimensional environment in a way that enables learning 

and decision making to our benefit. To aid adaptive 

functioning, we must therefore learn appropriate 

categorization rules that will allow us to predict relationships 

between combinations of object features and outcomes. 

 Using a modified category learning paradigm with an 

“approach-avoid” component, Rich and Gureckis (2018) 

recently demonstrated how mechanisms in category learning, 

combined with the choice-contingent nature of experiential 

learning, can “trap” us into patterns of suboptimal behavior. 

In this task, participants approached or avoided stimuli that 

belonged to one of two categories – “friendly bees”, yielding 

a 1-point reward if approached, or “dangerous bees”, yielding 

a 3-points loss if approached. Bee exemplars varied on four 

binary dimensions, two of which were relevant for predicting 

approach outcomes; a specific combination of features on the 



two relevant dimensions predicted “dangerous” bees, while 

the remaining stimuli were “friendly”.  A two-dimensional 

rule was therefore needed to correctly classify all stimuli, and 

to develop the correct strategy for approach-avoid decisions.  

 Crucially, when outcomes associated with stimuli were 

only available upon approach, in a contingent feedback 

condition – resembling the typical case when learning from 

experience in real life – less than 25% of participants 

successfully learned the two-dimensional rule, despite ample 

opportunity to learn. Instead, the majority learned a simpler, 

suboptimal rule involving approaching bees based on their 

feature on a single relevant dimension. In contrast, most of 

those in a full-information feedback condition, who received 

outcome feedback regardless of approach, successfully 

learned a two-dimensional rule.  

 Rich and Gureckis (2018) explained these results by 

suggesting that mechanisms in experiential learning (as 

outlined in Figure 1), coupled with selective attention 

mechanisms and a preference for learning simpler rules, led 

those in the contingent feedback condition into a persistent 

learning trap. Early in learning, participants in the contingent 

feedback condition may notice that certain features on one of 

the relevant dimensions sometimes lead to losses, and then 

prematurely develop the belief that this dimension is always 

associated with negative outcomes. Crucially, in subsequent 

learning, the participant avoids any instances with this feature 

– and hence does not receive the feedback that would correct 

the one-dimensional rule – forgoing many trials where they 

could have received a reward. Consequently, a persistent 

learning trap develops, leading to suboptimal performance in 

the long term and preventing learners from exploring the 

environment in a way that allows them to revise their 

erroneous belief. 

Valence Asymmetries in Attention and Exploration 

One factor that may affect a learner’s propensity to continue 

exploring learning environments, but has not yet been 

considered in the context of learning traps, is related to the 

valence of outcomes associated with learners’ choices.  

Although early work in decision-making highlighted the 

concept of loss aversion (e.g., Kahneman & Tversky, 1979; 

Tversky & Kahneman, 1992), recent findings have called into 

question its generalisability (e.g., Walasek & Stewart, 2015). 

These findings suggest that the risk of losses does not always 

lead to behavioral avoidance of particular choice options.  A 

more robust finding is that the prospect of a loss increases 

attention to options more than the prospect of an equal gain – 

a phenomenon termed loss attention (Yechiam & Hochman, 

2013; see Lejarraga et al., 2019 for a review).   

 Using simple two-choice tasks, studies have demonstrated 

the increased choice exploration of options involving losses 

relative to options that involve gains.  For example, Yechiam 

and Hochman (2013; Experiment 1) presented participants 

with a safe alternative with a certain gain (e.g., +35 points 

with 100% probability) and a risky alternative. The risky 

alternative involved either an uncertain sure gain (+1 or +200 

points, each with .5 probability), or a large gain or a small 

loss (-1 or +200 points, each with .5 probability). They found 

that the preference for the risky alternative was higher when 

it involved small losses compared to when it did not. 

Increased attentional exploration of losses relative to gains 

has also been demonstrated using process-tracing methods 

(e.g., Lejarraga et al., 2019; Pachur et al., 2018). Such studies 

suggest that negatively valenced options – that is, options that 

lead to losses – may increase both attention to item features 

and behavioral exploration of choice options, relative to 

positively valenced options that lead to gains. 

Loss Attention and Learning Traps 

These findings of valence asymmetries in attention and 

exploration suggest that the valence of choice options may be 

an important factor in the development of learning traps like 

those studied by Rich and Gureckis (2018). In a payoff 

structure such as the one used by Rich and Gureckis (2018), 

gains are frequently encountered (75% of items) while losses 

are less common (25% of items), and therefore levels of loss 

attention would be relatively modest. In contrast, studies of 

loss attention suggest that a payoff structure where losses are 

encountered more frequently than gains may enhance 

attention to relevant category dimensions, thereby resulting 

in learners being less likely to fall into a one-dimensional 

learning trap. 

 Given the converging evidence in the domains of attention 

and decision-making, the literature raises the possibility that 

negatively valenced category environments could attenuate 

learning trap development. This question, however, has not 

yet been examined, and constitutes the primary question of 

interest in the present studies. 

The Current Studies  

To address this aim, we examined learning in two contrasting 

payoff schedules; frequent-gains, where most exemplars 

predict positive outcomes (small gains), and frequent-losses, 

where most exemplars predict negative outcomes (small 

losses). Payoffs in the frequent-gains condition were identical 

to those used by Rich and Gureckis (2018), while the valence 

of these payoffs was reversed in the frequent-loss condition. 

Both payoff conditions required attention to two stimulus 

dimensions in order to optimize performance. Figure 2 shows 

a summary of this structure. 

 By comparing participants’ approach and avoidance 

responses in each category structure, we assessed whether the 

valence of payoff schedules could affect learning trap 

development. To create baseline versions of each type of task, 

we also presented corresponding full feedback conditions for 

each payoff condition, where feedback about the gain or loss 

outcome associated with each stimulus was provided 

regardless of whether the stimulus was approached. 

 In an environment with frequent-gains, we expected to 

replicate the main result from Rich and Gureckis (2018): 

when feedback about outcomes is choice-contingent, learners 

will likely fall into the trap of using a simpler, yet incomplete, 

one-dimensional decision rule. That is, we expect learners 

will choose to approach and avoid exemplars based on their 

values on a single feature dimension, resulting in an 

avoidance of some “friendly bee” exemplars. 

 In contrast, in the frequent-losses condition with contingent 



feedback, we expected that increased loss-induced attention 

will enhance attention to the relevant category dimensions. 

This should lead to less use of the suboptimal one-

dimensional (“1D”) rule compared to the corresponding 

frequent-gains condition; likewise, we expected that learners 

would be more likely to learn the correct two-dimensional 

(“2D”) categorization rule. Since learning traps arise from 

choice-contingent feedback, we expected that the one-

dimensional learning trap would be less evident in the full 

feedback conditions for both payoff conditions. 

Experiment 1 

Method 

Participants 215 adults (Mage = 37.68 years, 142 male, 72 

female, 1 other) from the United States were recruited, and 

participated, online through Amazon Mechanical Turk. 

Participants were paid a base amount, plus a bonus depending 

on points they earned during the task (M = $3.66 AUD). 

Materials Stimuli were computer-generated images of bees 

that varied along four binary visual dimensions. Stimuli were 

constructed by selecting one of two possible feature values 

on each of four visual dimensions. The dimensions were 

antennae (two or none), body (spotted or striped), legs (two 

or six), and wings (round or long). As such, the four 

dimensions generated a total of 16 unique stimuli.  

 Two out of the four stimulus dimensions were randomly 
chosen to be relevant for the outcomes of approach-avoid 

decisions. For the two relevant dimensions, a combination of 

feature values was selected to form the target combination 

(see Figure 2 for an example).  

 

 

Figure 2: Example reward structure in Experiments 1 and 2, 

with legs and body as the relevant dimensions. The target 

combination is outlined in red. Here, a possible 1D rule 

involves approach-avoid decisions based on only the legs 

dimension. 

 

 In the frequent-gains condition, stimuli with the target 

combination of features were “dangerous” and approaching 

them led to a loss of 3 points; the remaining stimuli were 

“friendly” and approach led to a gain of 1 point. Conversely, 

in the frequent-losses condition, stimuli with the target 

combination were “friendly” and approach led to a gain of 3 

points; the remaining stimuli were “dangerous” and approach 

led to a loss of 1 point.  

Procedure Participants were first presented with a cover 

story which described that there were friendly and dangerous 

bees, and that their goal was to collect as much honey as 

possible from friendly bees, which would then translate into 

points for a bonus payment. Participants were informed that 

it was possible to predict which bees are friendly and which 

are dangerous using each bee’s features. 

 Participants then completed a learning phase, beginning 

with a balance of 50 points. The learning phase consisted of 

eight blocks of 16 trials, so that each possible combination of 

the four dimensions (i.e., each of 16 unique stimuli) was 

encountered eight times. Hence, the total values of points 

gains/losses associated with 2D and 1D rules were identical 

across payoff conditions. Within each block, stimuli were 

pseudo-randomized such that in the frequent-gains condition, 

every eight stimuli contained six friendly and two dangerous 

bees; while in the frequent-losses condition, every eight 

stimuli contained two friendly and six dangerous bees. 

 On each trial, participants were presented with a bee 

stimulus and decided whether to approach (“harvest”) or 

avoid it. There was no time limit to respond. Approach led to 

a gain or loss in points, depending on the payoff condition 

and the stimulus, and avoidance led to no change in points. 

 Participants in the contingent feedback group were shown 

the number of points they earned after approaching the bee, 

but received no feedback about outcomes if they avoided it. 

Those in the full feedback group were also given feedback 

after approaching the bee; however, if they avoided it, they 

were still shown whether the bee was friendly or dangerous. 

Following feedback, a new stimulus was displayed with an 

onscreen counter updated to reflect the participant’s current 

point balance. 

 A test phase consisting of two blocks of 16 trials followed 

the learning phase, such that each combination of the four 

stimuli features was encountered twice. Trials were identical 

to those in the learning phase, but no feedback about the 

outcome of approach or avoid decisions was given.  

Results and Discussion 

Classifying Participant Behavior The 1D and 2D rules in 

the frequent-gains and frequent-losses conditions led to 

different expected patterns of approach-avoid decisions 

across a 16-trial block.  

 To illustrate how choice patterns for 1D and 2D rule-use 

were calculated, let us consider the frequent-gains payoff 

schedule shown in Figure 2. According to the 1D rule, 

within a 16-trial block, a participant would approach items 

based only on feature values from a single relevant 

dimension; if the 1D rule is defined on Dimension 1 (legs), 

they would avoid all items with a feature value of 1 on 

Dimension 1 (six legs), and only approach those with a 

feature value of 1 on the same dimension (two legs). That is, 

the participant would approach only eight items (i.e., only 

2/3 of all “friendly” items), and avoid the other eight items 



(i.e., erroneously avoid 1/3 of all “friendly” items). (Recall 

that the 16 items comprising any given block were all 

distinct from one another.) 

 In contrast, if a participant made choices according to a 

2D rule in a single 16-trial block, they would avoid only 

four items (e.g., those with feature combination [1,1] on 

dimensions 1 and 2 respectively). They would approach the 

12 remaining unique items (e.g., those with feature 

combinations [0,1], [1,0] and [0,0] on dimensions 1 and 2). 

 For the frequent-losses condition, choice patterns for 1D 

and 2D rule use was calculated in a similar manner. 

Following on from the previous example where participants 

form a 1D rule based on Dimension 1, participants could 

now approach all items with a feature value of 1 on 

Dimension 1 (i.e., [1,1], [1,0] on dimensions 1 and 2 

respectively; 8 out of 16 unique items in a given block) and 

avoid the remaining 8 items. On the other hand, if a 

participant followed a 2D rule, they would approach 4 items 

(e.g., those with feature combination [1,1] on dimensions 1 

and 2) and avoid the 12 remaining unique items (e.g., those 

with feature combinations [0,1], [1,0], and [0,0]). 

 In the learning phase, if choices conformed to either the 1D 

or 2D pattern of approach-avoid decisions on at least 15 out 

of 16 trials within a given block, they were classified as using 

that rule. Since there are two possible 1D rules, we calculated 

the number of trials on which choices adhered to each of the 

possible 1D rules, and then took the maximum over these two 

quantities. (Note that classification of a block as adhering to 

a 1D or 2D rule are thus mutually exclusive.) If the criterion 

for neither rule was met, participants were considered as 

using an “unclassified” rule.  

 In the test phase, since no feedback is given and thus no 

learning occurs, we combined the two test-phase blocks (i.e., 

blocks 9 and 10) into a 32-trial block. Consequently, the 

criteria for classification as following a 1D or 2D rule during 

the test phase was 30 rule-congruent responses out of 32 

trials; otherwise, the participant was “unclassified”.  

 This method of rule classification was identical to that used 

by Rich and Gureckis (2018). 

Task Performance During Learning and Test Phases 

Participants’ rule use on blocks across the learning and test 

phase is shown in Figure 3, which show the proportion of 

participants using a 1D or 2D rule on a given block. (Note 

that we only present the data for 1D and 2D rule use here, 

since unclassified rule use is a complement of the other two 

proportions, and of less relevance to our research question.)  

 Since rule classification consisted of three mutually 

exclusive categories, we used multinomial logistic regression 

to analyze rule use. Using likelihood ratio tests, we conducted 

a forward selection procedure on the variables of interest. 

From the forward selection procedure, we selected a reduced 

parsimonious model from which we then extracted test 

statistics associated with each predictor (Matuschek et al., 

2017 for a discussion of parsimonious vs. maximal models).  

 We found that receiving full feedback, instead of 

contingent feedback, increased participants’ likelihood of 

using a 2D rule rather than a 1D rule by more than 2 times in 

the learning phase (OR = 2.97, 95% CI [2.10, 4.19], p < .001); 

and by the test phase, by more than 4 times (OR = 4.12, 95% 

CI [1.64, 10.31], p = .003). Replicating Rich and Gureckis 

(2018), these results indicate when feedback was not 

contingent upon approach decisions (in a baseline full 

feedback condition), most people experiencing a payoff 

schedule with frequent gains learned the optimal two-

dimensional rule. However, in the contingent feedback 

frequent-gains condition, which replicated the payoff 

schedule used by Rich and Gureckis (2018), a majority 

tended to adopt an incomplete one-dimensional rule (39.1% 

during test) – indicating the development of a learning trap. 

 Turning to our primary question of whether payoff 

schedule valence (frequent-gains vs. frequent-losses) affects 

learning trap development, we found that in the contingent 

feedback conditions, a frequent-losses payoff schedule 

increased the likelihood of using a 2D rule as compared with 

a frequent-gains schedule, by more than 3 times in the 

learning phase, OR = 3.89, 95% CI [2.72, 5.55], p < .001; and 

in the test phase, by more than 8 times , OR = 8.23, 95% CI 

[2.84, 23.89], p < .001. This indicated that a learning 

environment with frequent small losses reduced the use of an 

incomplete 1D rule, and encouraged the use of a complete 2D 

rule, relative to an environment with frequent small gains. 

  
 

Figure 3: The proportion of participants in each condition 

classified as adopting the correct 2D rule, or falling into the 

1D learning trap, over the course of Experiment 1. 

 

 The results of Experiment 1 therefore appear congruent 

with the account that loss attention led to those in a frequent-

losses condition to explore different feature combinations on 

early trials, which then increased the likelihood of 

discovering that a combination of features from two 

dimensions are needed to optimise reward. 

Experiment 2 

Experiment 1 found an advantage for those in a learning 

environment with frequent losses, showing that they were 

less likely to fall into the one-dimensional learning trap, and 

more likely to learn a complete two-dimensional rule on the 

current task. However, another explanation for this advantage 

is that individuals may have prior beliefs about the proportion 

of good versus bad items that lead to a higher likelihood of 

avoidance. As such, individuals in the frequent-gains 

condition may inadvertently fall into the learning trap. If this 

was true, having some prior knowledge of the relevant base 



rates in the frequent-losses (i.e., many dangerous, few 

friendly) and frequent-gains (i.e., many friendly, few 

dangerous) conditions should decrease 1D responding, and 

reduce differences between the frequent-gains and frequent-

losses conditions in 2D rule use. 

 As such, the primary goal of Experiment 2 was twofold: 

first, to replicate the finding suggesting an effect of outcome 

valence; and second, to follow up on one possible alternative 

explanation that might lead to differences in how people 

respond in the two payoff conditions. 

Method 

Participants 198 US adults (Mage = 38.08 years, 127 male, 

71 female) participated online through Amazon Mechanical 

Turk. The payment scheme was identical to Experiment 1 

(M = $3.48 AUD), and those who had previously completed 

Experiment 1 were excluded from participation. 

Materials and Procedure Participants completed the same 

decision-based category learning task used in Experiment 1, 

with two differences. First, given that the primary aims of 

Experiment 2 concerned further investigating the learning 

trap that arises from choice-contingent feedback, the full 

feedback condition was omitted.  

 Second, we added groups who received additional 

instructions about the base rates of friendly and dangerous 

bees. In the no base-rate tip condition, task instructions were 

identical to those in Experiment 1. In the base-rate tip 

condition, participants were explicitly instructed about the 

relative proportions of positive versus negative stimuli during 

task instructions. In this condition, a comprehension check 

question was added after the instructions to ensure that 

participants remembered the base rate information given. 

Results and Discussion 

Task Performance Participants’ rule use over the course of 

the learning and test phase is shown in Figure 4. 

  

Figure 4: The proportion of participants in each condition 

classified as adopting the correct 2D rule or falling into the 

1D learning trap, over the course of Experiment 2.  

  

 Replicating the key finding of Experiment 1, the 1D 

learning trap was attenuated in a contingent-feedback 

frequent-losses condition. Compared to participants in 

contingent frequent-gains conditions, participants who 

experienced the frequent-losses payoff conditions were more 

than 10 times as likely to use a 2D rule over a 1D rule during 

the learning phase (OR = 10.59, 95% CI [6.57, 17.06], p < 

.001); by the test phase, they were more than 16 times as 

likely (OR = 16.57, 95% CI [4.49, 61.10], p < .001). 

 Comparison of test-phase rule use in the present frequent-

losses conditions (i.e., tip and no tip) with the corresponding 

frequent-losses condition in Experiment 1 (i.e., contingent, 

frequent-losses) suggests that 2D rule use was relatively less 

common in the present experiment (27.16% in Experiment 2, 

vs. 51.79% in Experiment 1). Nevertheless, statistical 

analysis still indicated that the effect of payoff schedule on 

two-dimensional rule use was robust. 

 An effect of base-rate tip was also found, but only for the 

learning phase. During the learning phase, receiving a tip 

instead of no tip increased a participant’s likelihood of using 

a two-dimensional rule by a factor of two, OR = 2.06, 95% 

CI [1.42, 2.98], p < .001; by the test phase, no effect of base-

rate tip was found (p = .43). Although a visual inspection of 

the data suggests that receiving a base-rate tip may contribute 

to increased 2D rule use in the frequent-gains condition 

(17.39% without tip, 28.26% with tip), levels of 1D rule use 

still remained high in the frequent-gains condition (41.30% 

without tip, 36.96% with tip); consequently, analysis did not 

indicate a significant interaction between base-rate tip and 

payoff condition (learning phase: p = .29; test phase: p = .76). 

 In summary, Experiment 2 generally replicated the primary 

findings of Experiment 1. An environment with a frequent-

losses payoff schedule led learners to be more likely to use a 

complete 2D rule instead of falling into a 1D learning trap, 

relative to frequent-gains. Additionally, informing 

participants about the base rates of positive and negative 

stimuli prior to commencing the task did not completely 

account for the outcome valence effect on learning trap 

attenuation. Receiving information about base rates had a 

limited effect on attenuating the learning trap during the 

learning phase, but did not affect decisions by the test-phase. 

General Discussion 

The present experiments examined how we may attenuate the 

development of a suboptimal behavioral learning trap that 

emerges during experiential category learning. We replicated 

previous findings demonstrating a persistent learning trap 

(Rich & Gureckis, 2018), in which the choice-contingent 

nature of learning from experience prevents the correction of 

a learning error. In a frequent-gains environment (i.e., a 

category structure involving frequent gains and infrequent 

losses), we found that this behavioral learning trap frequently 

led people to selectively attend to only a single dimension, 

and prevented people from learning about the true two-

dimensional structure of the task.  

A novel finding that emerged across the two experiments 

was that the learning trap was attenuated in a frequent-losses 

environment (i.e., a structure involving frequent losses and 

infrequent gains), and that levels of learning the complete and 

optimal categorization rule was higher, relative to a frequent-

gains environment. Moreover, Experiment 2 showed that this 

effect of payoff schedules persisted, even when we attempted 



to correct potentially erroneous prior beliefs about the base 

rates of positive versus negative stimuli. 

The effect of frequent losses in encouraging the use of an 

optimal two-dimensional rule, as opposed to an incomplete 

one-dimensional rule, was shown to be statistically robust 

across the two experiments. Nevertheless, we would like to 

note that 2D rule use in the frequent-losses condition 

appeared less frequent in Experiment 2 than in Experiment 1. 

These results could suggest that while frequent losses helped 

people avoid the learning trap, this does not always mean that 

the optimal two-dimensional rule will be learned. 

 The present results are consistent with previous findings 

from simpler, gamble-type tasks that demonstrate a valence 

asymmetry in attentional and choice exploration (i.e., loss 

attention). These studies have found loss-induced increases 

in attention both when operationalized through choice (e.g., 

Yechiam & Hochman, 2013), and through process-tracing 

measures of attention such as cursor-tracking tools (e.g., 

Lejarraga et al., 2019). Following on from these findings, we 

speculated that increased “loss attention” in a learning 

environment with frequent losses (and infrequent gains) may 

enhance attentional exploration of the relevant category 

dimensions. Present results were consistent with this notion; 

frequent losses appear to have increased attention to learning 

the specific combinations of features that predicted gain or 

loss outcomes, thereby increasing the likelihood of learning 

a complete two-dimensional rule.  

It is notable that a frequent-losses environment was able to 

attenuate the development of a one-dimensional learning 

trap, given the previously demonstrated persistence of this 

trap. With the goal of slowing the narrowing of attention to a 

single feature dimension, Rich and Gureckis (2018) tried 

three separate “interventions” within the choice-contingent 

feedback paradigm: introducing stochasticity to exemplar-

outcome associations, random occlusion of dimensions, and 

adding individuating features to each unique exemplar during 

learning. All three had limited success; none of these 

strategies effectively aided the learning of optimal 2D rule, 

and any attenuation in 1D responding was likewise 

accompanied by reductions in 2D responding, indicating that 

participants found it difficult to learn any type of dimensional 

rule. Our findings thus show that loss-induced increases in 

choice and attentional exploration may help people overcome 

a persistent error in experiential learning. 

Future Directions  

An important question that remains is exactly how people 

learn about the category environment – and consequently 

how learning traps develop or are attenuated – on a trial-by-

trial basis. By assessing how formal models of category 

learning relate to our data, we may be able to better 

understand the mechanisms that explain the formation of 

learning traps, and their attenuation, in this study. 

One model that has been assessed against behavior on the 

frequent-gains version of the present task is a modified 

version of the popular exemplar-based connectionist 

categorization model, ALCOVE (Kruschke, 1992), called 

ALCOVE-RL (Jones & Cañas, 2010; Rich & Gureckis, 

2018). Similar to ALCOVE, ALCOVE-RL classifies a new 

stimulus based on its similarity to category exemplars stored 

in memory. Since not all features are relevant to 

discriminating between categories, a key feature of 

ALCOVE-RL is a selective attention mechanism, which 

shifts attention following errors in predicting category 

outcomes. In addition to the core ALCOVE architecture, 

ALCOVE-RL includes a reinforcement learning and choice-

contingent feedback mechanism, such that network nodes are 

updated when instances are approached and outcome 

feedback is received, but not when they are avoided. 

ALCOVE-RL was able to successfully simulate the higher 

rate of learning a suboptimal 1D rule in the frequent-gains 

contingent feedback condition as compared with the full 

feedback condition. However, the model underpredicted the 

extent to which the learning trap developed when compared 

to data in the frequent-gains version of the present task.  

Future modelling work will involve refinement of 

ALCOVE-RL’s feedback mechanism to better simulate 

actual learning, and extension of the model to explain the 

current findings of learning trap attenuation in the frequent-

losses conditions. It will also be useful to examine whether 

the current data can be better explained by other formal 

models of category learning, such as ATRIUM (Erickson & 

Kruschke, 1998), which is a hybrid exemplar- and rule-based 

model. One key feature of ATRIUM is that it can learn a 

general categorization rule that applies to most training 

stimuli, but separate rules that apply to “exception” items. In 

the current context, ATRIUM may fall into a learning trap by 

learning an incomplete and simpler rule on early training 

trials and – due to the choice-contingent nature of feedback – 

failing to identify important exceptions to this rule.  

Implications 

The present work addresses an important intersection 

between category learning and reinforcement learning that is 

ubiquitous in everyday scenarios, where we must learn to 

represent a multidimensional world in a way that helps us 

make decisions.  As noted by Radulescu, Niv, and Ballard 

(2019), current accounts of reinforcement learning still 

cannot fully account for how we represent multidimensional 

environments to maximize favorable outcomes. On the other 

hand, little work has been done in category learning to 

address the same question, despite the clear relevance of 

categorization in accomplishing this important task; category 

learning studies that have considered the role of outcomes in 

learning performance have noted the pitfall of considering 

rewards but not losses (e.g., Schlegelmilch & von Helversen, 

2020), even though both occur in real-world learning.  

 To this end, we extend an emerging literature that addresses 

how suboptimalities in learning may emerge in the 

intersection between reinforcement and category learning, by 

considering an addition theoretical dimension – the valence 

of one’s learning environment. Present findings thus offer a 

starting point to suggest how we may overcome a persistent 

and consequential bias in human experiential learning. Given 

the implications of learning traps for our everyday lives, the 

understanding of mechanisms that influence their formation 

– which, in turn, informs how we may be able to prevent such 

traps – constitutes a compelling area for future inquiry. 
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