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Franz remarked in his 1912 essay “New Phrenology” 
that “the individual parts of the brain do not work inde-
pendently; they work interdependently, and it is because 
of the possible functional and anatomical connections that 
certain types or kinds of mental states are more in evidence 
than others”(p. 327). To Franz, the allure of localizing 
mental activities in the brain begot overly simplistic and 
crude theories of mental processes and brain function.

Localizing mental function need not be problematic. 
The issue is what to localize. The value of a theory that 
localizes mental function lies in both the characterization 
of the mental process and the bridge theory that links this 
characterization to the brain. Starting with an ill-specified 
or folk psychological theory of mental function ultimately 
limits the value of the overall enterprise and invites com-
parison with Franz’s (1912) new phrenology.

In this article, we will argue that well-specified process 
models of cognitive functions are the appropriate targets 
for localization. Successful cognitive models, which are 
quantitatively validated on a broad range of data sets, offer 
a number of advantages over folk psychological, ad hoc, or 
traditional psychological theories. In addition to being pre-
dictive, behavioral models have mechanisms and dynamics 
that can be related to brain measures. Although they are not 
naive accounts of mental function, cognitive models are typ-
ically idealized and relatively simple. This clarity provides a 
good starting point for the localizing of function. Given that 
debates persist over the basic functions of areas as well stud-
ied as the hippocampus (Eichenbaum, 1999; Stark, Bayley, 
& Squire, 2002), starting simple makes sense.

Here, we will focus on relating a successful process 
model of human category learning to a learning circuit in-
volving the hippocampus, perirhinal, and prefrontal (PFC) 
cortices. Category learning offers a good test domain for 
our approach, since category learning by example is a 
ubiquitous, flexible, and critical human behavior that is 
well studied and modeled within cognitive psychology. 
Furthermore, in recent years, there has been an increasing 
interest in the cognitive neuroscience of category learning 
(Ashby & Ell, 2001; Kéri, 2003).

The model we will consider, supervised and unsuper-
vised stratified adaptive incremental network (SUSTAIN; 
Love, Medin, & Gureckis, 2004), will be applied to human 
learning data from amnesic patients, infants, young adults, 
and older adults. Work in neuropsychology, electrophysi-
ology, neuroanatomy, brain imaging, and animal lesion 
studies will be marshaled to support the mapping between 
SUSTAIN and structures in the brain. SUSTAIN predicts 
how degraded function in a learning circuit involving the 
hippocampus, PFC, and perirhinal cortex affects learn-
ing performance for various groups. SUSTAIN relates the 
degree of preserved function to how readily members of a 
group can individuate events, as opposed to collapsing ex-
periences together into a common gestalt. To foreshadow, 
the proposed continuum of function is shown in Figure 1. 
After introducing SUSTAIN, we will relate aspects of 
SUSTAIN to a learning circuit involving the PFC, hip-
pocampus, and perirhinal cortex, give evidence for our 
characterization of this learning circuit, and present sup-
portive simulations. This exercise in relating SUSTAIN 

Models in search of a brain

Bradley C. Love 
University of Texas, Austin, Texas

and

Todd M. Gureckis
Indiana University, Bloomington, Indiana

Mental localization efforts tend to stress the where more than the what. We argue that the proper targets for 
localization are well-specified cognitive models. We make this case by relating an existing cognitive model of 
category learning to a learning circuit involving the hippocampus, perirhinal, and prefrontal cortices. Results from 
groups varying in function along this circuit (e.g., infants, amnesics, and older adults) are successfully simulated 
by reducing the model’s ability to form new clusters in response to surprising events, such as an error in supervised 
learning or an unfamiliar stimulus in unsupervised learning. Clusters in the model are akin to conjunctive codes 
that are rooted in an episodic experience (the surprising event) yet can develop to resemble abstract codes as they 
are updated by subsequent experiences. Thus, the model holds that the line separating episodic and semantic 
information can become blurred. Dissociations (categorization vs. recognition) are explained in terms of cluster 
recruitment demands.

Cognitive, Affective, & Behavioral Neuroscience
2007, 7 (2), 90-108

B. C. Love, brad love@mail.utexas.edu



Localizing Cognitive Models        91

to particular brain regions suggests a recasting of several 
dichotomies popular in the field, such as the distinctions 
between categorization and recognition, recollective and 
familiarity-driven responding, and episodic and semantic 
memory.

A Brief Overview of SUSTAIN
The medium for representing category knowledge 

has been proposed to be rule based (Nosofsky, Palmeri, 
& McKinley, 1994), exemplar based (Kruschke, 1992; 
Medin & Schaffer, 1978; Nosofsky, 1986), and prototype 
based (Rosch & Mervis, 1975; Smith, 2002). SUSTAIN 
proposes that clusters, which display characteristics of 
all three of the aforementioned approaches, underlie our 
category representations (see Love, 2005). A cluster is a 
bundle of features that captures conjunctive relationships 
across features (e.g., wings, flies, and has feathers tend to 
co-occur).

In SUSTAIN, categories are represented by one or more 
clusters. For example, the category of birds is likely rep-
resented by multiple clusters (e.g., song birds, birds of 
prey, penguins, ostriches, etc.). A cluster can also serve to 
represent multiple categories. For example, the same clus-
ter can be used to represent information about penguins, 
birds, and animals. Clusters are linked to categories by 
association weights that are adjusted by learning rules.

As is shown in Figure 2, SUSTAIN’s clusters mediate 
the relationship between inputs (e.g., stimulus presenta-
tion) and output (e.g., category assignment). SUSTAIN 
begins with one cluster centered on the first training item. 
Additional clusters are recruited in response to surpris-
ing events. In unsupervised learning, a surprising event 
is exposure to a sufficiently unfamiliar or novel stimulus. 
In supervised learning, a surprising event is a classifica-
tion error (e.g., incorrectly predicting that a bat is a bird). 
SUSTAIN’s recruitment scheme implies that surprise 
drives differentiation of critical stimulus patterns. When 

a surprising event does not occur, the current stimulus is 
assigned to the dominant cluster (i.e., the cluster most ac-
tivated or similar to the current item), and this dominant 
cluster moves toward the current stimulus, so that the clus-
ter converges to the centroid or prototype of its members. 
Thus, in the absence of surprise, events are collapsed to-
gether in memory.

As a result, SUSTAIN is a prototype model when each 
category is represented by one cluster and is an exemplar 
model when each item is captured by its own cluster. Of 
course, most cases fall in between these two extremes. In 
general, the simpler or more regular the category structure, 
the smaller the number of clusters recruited is (cf. Feld-
man, 2000). Rule-based influences arise from SUSTAIN’s 
attentional mechanism, which biases it toward solutions 
that involve a limited number of stimulus attributes.

Increasing Ability to Create Clusters
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Figure 1. Various groups are ordered by prefrontal cortex–
medial temporal lobe (PFC–MTL) function. At one extreme, am-
nesic patients with hippocampal lesions tend to collapse events into 
a single gestalt and, therefore, are sensitive primarily to feature 
or item frequency. At the other extreme, young adults draw finer 
distinctions and are more sensitive to study context and feature 
patterns or conjunctions present in their environment. SUSTAIN 
captures differences along this continuum by varying a parameter 
related to how readily additional clusters (i.e., bundles of features) 
are recruited during category learning. AD, Alzheimer’s disease.
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Figure 2. The basic components of the SUSTAIN model. First, 
the stimulus is encoded along its dimensions (in this case, there 
are four binary-valued attributes: three perceptual dimensions 
and the category label). The representational space is contorted 
(shrunk or stretched along each dimension) by the attentional 
mechanism to accentuate critical attributes. The clusters (in this 
case, there are three) compete to respond to the stimulus. The clus-
ter closest to the stimulus in representational space wins (through 
cluster competition; note the inhibitory connections among the 
three clusters). The winning cluster predicts the unknown stimu-
lus dimension value (in this case, the category label) by sending a 
signal to the output units forming the queried dimension.
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Although intuitive and simple, SUSTAIN has accounted 
for an array of challenging data sets spanning a variety 
of category-learning paradigms, including classification 
learning (Love & Medin, 1998b), learning at different levels 
of abstraction (Love & Medin, 1998a), inference learning 
(Love, Markman, & Yamauchi, 2000), development trends 
in learning (Gureckis & Love, 2004), unsupervised learn-
ing (Gureckis & Love, 2002, 2003), the influence of culture 
on conceptual organization (Love & Gureckis, 2005), and 
schematic influences on category learning and recognition 
memory (Sakamoto & Love, 2004). SUSTAIN’s formal de-
scription is presented in the Appendix.

SUSTAIN’s clustering approach addresses a fundamen-
tal challenge facing all learning models: defining what 
constitutes an event or episode. For example, what con-
stitutes an exemplar in an exemplar-based approach is 
typically left undefined (see Logan, 1988). To illustrate 
the problem, consider a learner focusing on a chair while 
walking across a room. At every moment, he or she is 
exposed to a slightly different image. The viewpoint is 
constantly changing and, with it, changes a number of the 
chair’s properties (e.g., the visible features, albedo, etc.). 
After the learner has walked across the room, is one ex-
emplar stored or are a million? What constitutes an event 
or experience when one moves outside laboratory-defined 
learning trials?

SUSTAIN’s solution is to collapse all information into 
the dominant cluster and to recruit a new cluster only in 
response to a surprising event. In the example above in-
volving the chair, all the information above would be inte-
grated into a single cluster unless something unexpected 
was encountered. SUSTAIN does not merely replace one 
problem (defining what an exemplar is) with another (de-
fining what a cluster is) either. SUSTAIN specifies when 
and how clusters are formed and updated. SUSTAIN’s 
clustering method may prove useful in understanding 
how humans individuate in general (see Barsalou, Hutten
locher, & Lamberts, 1998). In terms of comparing the per-
formances of various groups (e.g., infants, young adults, 
older adults, and amnesic patients), SUSTAIN explains 
how differences in the ability to individuate events lead to 
different patterns of generalization.

Proposed Mapping Between  SUSTAIN 
and the Brain

Central to SUSTAIN is the ability to form new clusters 
in response to surprising events. This type of learning is 
rapid and involves forming new codes or clusters to sup-
port subsequent learning. A mature and intact learning 
circuit involving the hippocampus, PFC, and perirhinal 
cortex is assumed to underlie this ability. We view the 
hippocampus as the constructor of new codes or clusters. 
We propose that the activation of previously recruited 
clusters is reflected by a familiarity signal generated by 
structures in the medial temporal lobe (MTL), such as the 
perirhinal cortex. The PFC is assumed to play a role in 
directing encoding and retrieval. The PFC plays a critical 
role in orienting encoding toward surprising events (Cor-
betta & Shulman, 2002), which dovetails with SUSTAIN’s 
surprise-driven cluster recruitment. In terms of SUSTAIN, 

the PFC can be seen as determining when the measure of 
fit generated by the perirhinal cortex is insufficient. When 
the current stimulus is judged to be sufficiently surprising, 
the hippocampus is directed to create a new cluster.

In support of our proposal, the PFC and the perirhi-
nal cortex are interconnected and participate in a circuit 
that may direct the hippocampus’s encoding of surpris-
ing events (see Ranganath & Rainer, 2003, for a review). 
Indeed, lesioning the connection between the PFC and 
the perirhinal cortex eliminates memory advantages for 
surprising items (Parker, Wilding, & Akerman, 1998). The 
PFC monitors surprise by comparing the current stimu-
lus with representations in the perirhinal cortex (which 
provides a measure of familiarity or fit) and, on the basis 
of this comparison, directs hippocampal encoding (see 
Brown & Aggleton, 2001; Ranganath & Knight, 2003). 
The perirhinal familiarity signal is not bereft of associa-
tive or conjunctive information, since it is based on cluster 
activations, consistent with the position that conjunctive 
codes are present in regions neighboring the hippocampus 
(e.g., Stark et al., 2002). Further evidence for the operation 
of this circuit comes from interactions observed between 
the PFC and the hippocampus. Suppression of memory 
for an item leads to increased PFC activation, decreased 
hippocampal activation, and reduced item memory (M. C. 
Anderson et al., 2004). Although not as broadly construed, 
existing learning models have hinted at the learning cir-
cuit identified here (Carpenter & Grossberg, 1993; Li, 
Naveh-Benjamin, & Lindenberger, 2005).

In focusing on the hippocampal aspect of the learning 
circuit, existing accounts of hippocampal function fit well 
with our account. Recruiting clusters allows SUSTAIN 
to form new codes that enable learning of conjunctive or 
configural information. This process is in the same spirit 
as configural associative theory, which holds that the hip-
pocampus binds two or more separated representations 
to create a new unit that enables configural responding 
(Sutherland, McDonald, Hill, & Rudy, 1989). Similarly, 
flexible relation theory holds that the hippocampus is 
specialized for encoding relations among elements (N. J. 
Cohen & Eichenbaum, 1993). One unique characteristic 
of our account is that new codes begin as context-sensitive 
clusters that encode all the attended aspects of the surpris-
ing event but, over time, can come to resemble abstract 
codes as clusters are activated by similar events.

As in Schmajuk and DiCarlo’s (1992) model, dis-
abling the hippocampus (i.e., the ability to form multiple 
clusters in SUSTAIN) prevents rapid learning of novel 
stimulus configurations. Interpreting the weight update 
from SUSTAIN’s clusters to outputs as cortical learning, 
SUSTAIN, like Gluck and Myers’s (1993) model, assumes 
that the hippocampus builds the internal codes that sup-
port cortical learning. SUSTAIN’s rapid recruitment of 
clusters in response to surprising events parallels Norman 
and O’Reilly’s (2003) hippocampal network, which rap-
idly acquires distinct episodic traces that bind individual 
stimulus elements together in memory.

To summarize, we propose that the hippocampus con-
structs codes, the perirhinal cortex generates a familiarity 
or fit signal, and the PFC monitors and directs encoding 
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and retrieval processes. In terms of SUSTAIN, cluster ac-
tivations relate to the fit signal generated by the perirhinal 
cortex, with cluster evaluation processes carried out by 
the PFC. When an event is deemed surprising by the PFC, 
the hippocampus attempts to construct a new cluster. The 
role of these areas, as well as their relation to aspects of 
SUSTAIN, is summarized in Figure 3.

Note that disruption anywhere along the learning circuit 
can result in the failure to encode a surprising event. For in-
stance, without a functioning hippocampus, an event could 
be very surprising but not result in a new cluster’s being 
formed. Conversely, with a functioning hippocampus and 
a damaged PFC, a surprising event that should orient at-
tention for encoding could fail to do so. In modeling terms, 
the degree of PFC and hippocampal function are captured 
by separate parameters (see the Appendix for details).

Here, we will focus on populations and tasks in which 
hippocampal function should be the limiting factor. The 
fact that behavioral data alone cannot determine where the 
cognitive bottleneck lies highlights the worth of consider-
ing a broader set of measures.

The parameter specifying hippocampal function var-
ies along a continuum, with amnesic patients lacking a 
hippocampus at one extreme and young normals at the 
other extreme. The parameter sets SUSTAIN’s ability to 
form clusters that are similar to existing clusters. When 
the parameter is set low (poor hippocampal function), 
SUSTAIN can successfully form a new cluster only when 
the current stimulus is drastically different from any exist-
ing cluster. With low functioning, SUSTAIN has trouble 
establishing new clusters that are somewhat similar to ex-
isting clusters and experiences (i.e., events or episodes 
tend to be undifferentiated). In all the simulations reported 
here, this parameter is the only aspect of SUSTAIN that 
varies across populations.

The proposed mapping between SUSTAIN and brain 
regions is coarse (e.g., no distinction is made between 
CA1 and CA3 in the hippocampus) and incomplete, since 
long-term consolidation processes are not considered and 
other brain areas implicated in category learning are left 
unmapped. A complete theory of how the brain supports 
category learning will need to detail the contributions of 
numerous learning systems. For example, a frontal cir-
cuit involving the head of the caudate nucleus, anterior 
cingulate, and dorsolateral PFC likely supports verbal or 
rule-based learning (Ashby, Alfonso-Reese, Turken, & 
Waldron, 1998; Posner & Dehaene, 1994). Although it 
will not be explored fully here, SUSTAIN’s attentional 
system, which selects a small subset of relevant stimu-
lus properties, naturally maps onto this verbal-learning 
system (Love, 2003). Other learning systems, such as a 
procedural-learning system (Ashby et al., 1998) and an 
implicit-learning system (Reber, Stark, & Squire, 1998), 
also will not be addressed here. We will focus on tasks 
and groups that stress the role of the PFC–MTL learning 
circuit in category learning.

By focusing on the hippocampus’s role in constructing 
conjunctive codes, we are not ruling out that other brain 
areas could carry out similar functions (perhaps with less 
efficiency and speed). However, we are stating that the 
hippocampus plays an important role in fulfilling this 
function. Despite its coarseness and incompleteness, our 
simple account relating SUSTAIN to the brain will ad-
dress a diverse set of findings and suggest a number of 
predictions, which will be discussed in the remainder of 
the article.

The Nature of Conjunctive Information
Recruiting multiple clusters is necessary for the encod-

ing of conjunctive information. Clusters can be seen as con-

Prefrontal Cortex

Directs encoding and retrieval

Determines when to recruit a cluster

Perirhinal Cortex

Signals familiarity

Signals cluster activations

Hippocampus

Builds conjunctive codes

Recruits new clusters

Figure 3. The hippocampus, perirhinal, and prefrontal cortex form a circuit whose operation par-
allels SUSTAIN’s. Each area’s functional role in the prefrontal cortex–medial temporal lobe circuit 
is given, along with its interpretation within SUSTAIN.
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junctive codes that bundle together featural information. 
Clusters capture critical patterns of feature co‑occurrence. 
For example, relationships such as wooden spoons tend 
to be large, whereas steel spoons tend to be small, can be 
captured by multiple clusters that bundle together related 
features that define informative subtypes or conjunctions.

How conjunctive a task is and, therefore, how much 
it relies on the PFC–MTL learning circuit is determined 
by how many clusters are required for successful perfor-
mance. Example tasks that will tend to require multiple 
clusters include memory for item order (a conjunction 
of item and position), recollection and episodic memory 
(item or event conjoined with context), list discrimination 
(a conjunction of item and study list), and memory for 
item pairs (a conjunction of items). Although SUSTAIN 
has not yet been applied to all of these tasks, it would re-
quire multiple clusters to master such tasks.

In contrast, tasks that are more familiarity driven, 
such as know, as opposed to remember, responses in the 
remember–know paradigm (see Tulving, 1985) and single-
item recognition for featurally distinct stimuli, should rely 
more on existing representations in the perirhinal cortex. 
SUSTAIN can successfully perform these tasks by utiliz-
ing existing clusters or by relying on one recruited cluster, 
which is sufficient to encode feature frequencies, but not 
feature co-occurrence patterns.1

Although we do claim that the hippocampus is special-
ized for encoding conjunctive information in the form of 
clusters, we are not claiming that tasks that rely heavily on 
conjunctive code formation are qualitatively distinct from 
those that tend to be less demanding of code construc-
tion. For example, although recollective responses tend to 
require the formation of codes to encode the conjunction 
of context and item, certain familiarity-based responses 
may also rely on conjunctive codes. For example, detect-
ing patterns or correlations of features in the environment 
requires establishing conjunctive codes. In the absence 
of contextual information, pattern-following items will 
elicit know responses. Analogously, certain single-item 
recognition tasks may require some degree of conjunctive 
encoding (e.g., item feature conjunctions) to successfully 
differentiate studied and nonstudied items, and amne-
sic patients should perform worse than normals at such 
tasks.

Our stance is that there are a number of tasks and meth-
ods that have shown dissociations between normals and 
groups low in hippocampal function and that the true un-
derlying variable, which other variables correlate with, 
is the number of clusters required for successful perfor-
mance. Even basic distinctions, such as episodic versus 
semantic memory, are blurred by our analysis. Reason-
ably, SUSTAIN predicts that semantic knowledge is 
rooted in an episode (i.e., a recruited cluster). When a 
recruited cluster responds to subsequent events and is up-
dated, some of the original episodic features of the cluster 
will be washed out in the averaging process involved in 
updating a cluster with new information. Thus, over time, 
the distinction between episodic and semantic knowledge 
can become blurred (see McClelland, McNaughton, & 
O’Reilly, 1995). Likewise, we do not restrict hippocampal 

learning to learning involving awareness; rather, we view 
awareness as an emergent property of hippocampal learn-
ing (see Chun & Phelps, 1999; Eichenbaum, 1999).

Corroborating Empirical Data
The next two sections will provide empirical evidence 

for our account of the PFC–MTL learning circuit, focus-
ing on the role of the hippocampus. The first section will 
review evidence that the hippocampus is involved in the 
construction of new codes that support later learning. The 
second section will review evidence that these codes are 
conjunctive in nature.

The hippocampus as code builder. Electrophysi-
ological studies of monkeys have shown that new associa-
tions for location/scene pairings are encoded in the hippo-
campus (Wirth et al., 2003). In humans, novel items tend 
to activate prefrontal areas and the MTL, with particularly 
robust activations in the hippocampus (Kirchhoff, Wagner, 
Maril, & Stern, 2000; Knight, 1996; Schacter & Buckner, 
1998), and these MTL activations are predictive of subse-
quent memory (Brewer, Zhao, Desmond, Glover, & Gab
rieli, 1998; Grunwald, Lehnertz, Heinze, Helmstaedter, 
& Elger, 1998; Stern et al., 1996). Ranganath and Rainer 
(2003) have provided an extensive review of lesion, event-
related potential, and imaging studies that demonstrate a 
novelty response in the PFC and areas of the MTL. The 
involvement of prefrontal areas in concert with the MTL 
is consistent with our hypothesis that prefrontal areas are 
involved in the assessment of surprise and direct encoding 
of information in the hippocampus.

Time course data from imaging studies also support the 
idea that the hippocampus plays a prominent role in code 
construction. Stronger hippocampal activations are often 
seen early in learning, suggesting that the codes for sup-
porting later learning were initially constructed by the hip-
pocampus (Poldrack et al., 2001; Zeineh, Engel, Thomp-
son, & Bookheimer, 2003). These findings are consistent 
with the view that codes previously constructed by the 
hippocampus can support learning, throughout the brain, 
that does not depend on the hippocampus (Gluck, Oliver, 
& Myers, 1996). Analogous results have been found in 
electrophysiological studies in which rabbit eyeblink con-
ditioning has been examined (Sears & Steinmetz, 1990). 
Consistent with these results, SUSTAIN also tends to re-
cruit clusters early in learning when surprising events are 
numerous. Subsequent learning utilizes these clusters in 
the absence of additional cluster recruitment.

Conjunctive codes and the hippocampus. Findings 
from amnesic patients with hippocampal lesions bolster 
this theoretical outlook. Amnesic patients tend to be worse 
at recollection and recall, which requires encoding a con-
junction of item and context, than at familiarity-based 
judgments (Yonelinas, Kroll, Dobbins, Lazzara, & Knight, 
1998; Yonelinas et al., 2002). Amnesic patients equated 
with controls for item recognition remain impaired in list 
discrimination (Downes, Mayes, MacDonald, & Hunkin, 
2002; Mayes et al., 2001), which requires encoding the 
conjunctions of item and list. In comparison, prefrontal 
patients are not impaired at this test when equated with 
controls on item recognition (Mangels, 1997).
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Patients with hippocampal damage make more con-
junctive errors than do control participants (Kroll, Knight, 
Metcalfe, Wolf, & Tulving, 1996). In Kroll et al., amne-
sic patients studied pairings of syllables and were able to 
recognize studied syllables, but they could not determine 
whether two syllables had appeared together at study 
and would false alarm to novel combinations of studied 
syllables. Similarly, amnesic patients perform well on 
single-item recognition tasks but show deficits on tasks 
that depend on encoding relations between items (Hold-
stock et al., 2000; Vargha-Khadem et al., 1997), such as 
recognizing the pairing of a picture with a word or a face 
with a voice. Lesioning studies provide a similar view of 
hippocampal function. The rat hippocampus supports rec-
ognition of spatial arrays of objects, whereas the perirhi-
nal cortex responds to single objects (Wan, Aggleton, & 
Brown, 1999). This pattern of findings with lesioned rats 
extends to nonspatial domains (see Eichenbaum, 2000, 
for a review).

Findings from amnesic patients and lesion studies are 
corroborated by fMRI studies of healthy normals. Acti-
vation of the hippocampus at study predicts recollection, 
but not item recognition, with the opposite being true for 
the perirhinal cortex (Davachi, Mitchell, & Wagner, 2003; 
Ranganath et al., 2004). During retrieval, hippocampal 
activity increases when accompanied by remember re-
sponses, but not when accompanied by know responses 
(Eldridge, Knowlton, Furmanski, Bookheimer, & Engel, 
2000). Recollective memory for scenes is accompanied by 
hippocampal activation at retrieval, whereas familiarity-
based responding is associated with perirhinal activation 
(Daselaar, Fleck, & Cabeza, 2006; Montaldi, Spencer, 
Roberts, & Mayes, 2006). Similarly, during recognition, 
less perirhinal activation is observed for familiar pictures, 
but more hippocampal activation is observed for success-
ful recognition of picture and name pairings (Gabrieli, 
Brewer, Desmond, & Glover, 1997).

It is not the case that conjunctive information is simply 
more difficult to process. One source of evidence argu-
ing against this conclusion is the aforementioned studies 
in which amnesic patients were equated on item recog-
nition measures but still showed substantial deficits on 
conjunctive memory tasks. Another source of evidence 
comes from work showing slower forgetting curves for 
conjunctive information in healthy normals (Hockley, 
1992; Naveh-Benjamin, 2000), which would not be ex-
pected if conjunctive information was simply more dif-
ficult to encode.

Category Learning and Recognition in Amnesic 
Patients

As is shown in Figure 1, amnesic patients are character-
ized by their inability to individuate events (i.e., to recruit 
clusters in response to surprising events). Knowlton and 
Squire’s (1993) experiments illustrate this point with a 
category-learning task. Knowlton and Squire found that 
amnesic patients can categorize, but not recognize, dot 
pattern stimuli at accuracy levels comparable to those of 
matched controls.2

 
This basic pattern of results has been 

replicated utilizing stimuli with discrete features (Reed, 
Squire, Patalano, Smith, & Jonides, 1999).

In Knowlton and Squire’s (1993) categorization task, par-
ticipants viewed 20 low and 20 high distortions of an un-
derlying prototype during the study phase (see Figure 4). 
The participants were then informed that all of these items 
belonged to a common category. At test, the participants in-
dicated whether the presented stimulus was a member of the 
category. The four types of test stimuli included are shown 
in Figure 4. Half of the test trials consisted of foil patterns 
that did not conform to the prototype underlying the study 
items. An example stimulus is shown in Figure 4 under the 
heading “Random.” The other half of the test trials included 
the presentation of the prototype (which was not actually 
shown during the study phase), novel low distortions of the 
prototype, and novel high distortions of the prototype.

In the recognition task, the participants viewed five dis-
tinct patterns eight times each. At test, the participants 
were shown these five items and five foils and indicated 
whether the stimulus was shown in the study phase. The 
main results, illustrating a dissociation between categori-
zation and recognition performance for amnesic patients, 
along with SUSTAIN’s fit of these data, are shown in Fig-
ure 5. In the categorization test phase, both groups (and 
SUSTAIN) displayed a generalization gradient that fell as 
similarity to the prototype decreased (see Figure 6).

Simulations of Knowlton and Squire (1993). Low 
hippocampal function in SUSTAIN was modeled by re-
ducing the model’s ability to recruit a cluster in response to 
a surprising event when existing clusters were somewhat 
similar to the surprising stimulus. A parameter regulated 
the threshold for successfully forming a new cluster in re-
sponse to a surprising event. Groups low in hippocampal 
function had a lower setting of this parameter. SUSTAIN 
simulations of amnesic patients were identical to simula-
tions of the controls, except for the setting of the hippo-
campal function parameter. Details for all the simulations 
are provided in the Appendix.

High DistortionPrototype Low Distortion Random

Figure 4. Example stimuli from Knowlton and Squire’s (1993) catego-
rization task.
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SUSTAIN’s simulations for both groups utilized a sin-
gle cluster for the category-learning task. All of the study 
items were sufficiently similar to one another that no sur-
prising events occurred, and therefore, all the items were 
collapsed into a single cluster. Because both groups had 
the same internal representation of the study items (i.e., 
one cluster), SUSTAIN necessarily predicted equivalent 
performance for the two groups.

In contrast, the simulations for the controls in the rec-
ognition task resulted in five clusters being recruited. The 
five distinct patterns shown in the recognition study phase 
were sufficiently dissimilar that they were individuated 
(i.e., each item was surprising when initially presented). In 
the amnesic simulations of the recognition task, each item 
was also surprising when initially presented, but because 

of low hippocampal function, clusters were not always 
recruited in response to these surprising events. Instead 
of recruiting five clusters, as in the normal simulations, 
SUSTAIN recruited 2–4 clusters in the amnesic simula-
tions.3

 
Collapsing items together within a cluster led to rep-

resentations that were not well suited for item recognition. 
Like amnesic patients, the amnesic simulations displayed 
degraded, but above-chance, recognition performance.

Multiple systems? The theoretical interpretation 
of SUSTAIN’s fits differs from Knowlton and Squire’s 
(1993) interpretation of their data. Following Nosofsky 
and Zaki (1998), we suggest that recognition and catego-
rization engage common mechanisms (see Love, 2002b, 
for supportive results with young normals). In fact, as is 
described fully in the Appendix, recognition and categori-
zation are modeled in an identical fashion. The two tasks 
used by Knowlton and Squire differ to the degree that they 
require multiple clusters. If the stimulus sets for recogni-
tion and categorization were swapped, we would predict 
that the pattern of results would be reversed.

In summary, the underlying variable for explaining per-
formance differences between the two populations is not 
recognition or categorization but reliance on conjunctive 
codes (i.e., number of clusters required). In the case of 
Knowlton and Squire’s (1993) design, only one cluster 
is required for successful categorization, and predicted 
performance is identical for both groups. However, for a 
more difficult category-learning task that requires mul-
tiple clusters (e.g., one that involves multiple categories 
or category subtypes), SUSTAIN predicts that amnesic 
patients should show a deficit, relative to controls, consis-
tent with Zaki’s (2004) meta-analysis demonstrating such 
a deficit across a number of category-learning studies in 
which amnesic patients and controls were compared.

The SUSTAIN simulations bear a resemblance to 
Nosofsky and Zaki’s (1998) modeling of these data with 
an exemplar model. Nosofsky and Zaki modeled amnesic 
patients as having lower sensitivity (i.e., broader gener-
alization gradients for each exemplar) than do controls. 
Effectively, this led to a blurring or averaging of the in-
ternal representations for the amnesic simulations. One 
interpretation of this blurring operation is that it function-
ally implements a clustering model in which items are col-
lapsed into common clusters, as in SUSTAIN. Although 
simulation predictions converge, our account does differ 
from Nosofsky and Zaki’s in that SUSTAIN’s simulations 
indicate that amnesic patients should have difficulty en-
coding items, as evidenced by the smaller number of clus-
ters recruited in the recognition condition, relative to con-
trols. In other words, what counts as an exemplar or event 
differs with changes in PFC–MTL function (see Figure 1). 
Finally, whereas Nosofsky and Zaki advocated a single-
system view of recognition and categorization, we see it 
as likely that multiple and overlapping systems contribute 
to both recognition and categorization, although, in this 
article, we focus on the PFC–MTL learning circuit.

Infant Category Learning
The human brain undergoes considerable development 

postbirth. In fact, important structural changes continue 

Pr
o

p
o

rt
io

n
 C

o
rr

ec
t

SUSTAIN controls
SUSTAIN amnesics
Controls
Amnesics

Categorization Recognition

.5

.6

.7

.8

.9

1

Figure 5. The main results from Knowlton and Squire (1993), 
along with SUSTAIN’s fit.
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Figure 6. The generalization gradient for participants from 
Knowlton and Squire’s (1993) categorization test phase are 
shown, along with SUSTAIN’s fit.
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up to adulthood. As a first approximation, the pattern of 
development follows a back-to-front trajectory, starting 
with basic visual areas and progressing toward frontal 
areas (Johnson, 2003), as evidenced by synaptic growth 
and glucose uptake (Chugani, Phelps, & Mazziotta, 1987). 
The hippocampus is unusual in that it undergoes functional 
neurogenesis throughout adulthood (Eriksson et al., 1998; 
van Praag et al., 2002), and this growth may be exagger-
ated in individuals who frequently engage in stimulating 
behaviors (Maguire et al., 2000; van Praag, Christie, Se-
jnowski, & Gage, 1999). These new neurons participate in 
the formation of new hippocampal-dependent memories 
(Shors et al., 2001) and may naturally map to the cluster 
formation process in SUSTAIN.

Considerable developmental changes occur in the hippo-
campus during the 1st year of life. Cell differentiation surges 
in the hippocampus between 7 and 10 months (Seress & 
Mrzljak, 1992) and continues into the 2nd year (Merzenich 
& Sameshima, 1993). Connectivity between the hippo-
campus and other areas increases into the 2nd year (Benes, 
1994). Hippocampal volume reaches adult level during the 
second half of the 1st year of life (Kretschmann, Kammradt, 
Krauthausen, Sauer, & Wingert, 1986).

Given these developmental changes, one reasonable 
hypothesis is that infants’ PFC–MTL learning circuit will 
not be fully functional. In terms of the continuum shown 
in Figure 1, young infants (4-month-olds) are assumed to 
have function closer to that of amnesic patients than to 
that of young adults. Thus, infants should show difficulty 
in conjunctive tasks that require multiple clusters. Indeed, 
the ability to encode and, after a delay, retrieve conjunc-
tions of objects and actions begins to emerge at 9 months 
of age (Carver & Bauer, 2001; Diamond, Churchland, 
Cruess, & Kirkham, 1999; Nelson, 1995). Toward the end 
of the 1st year of life, memory capabilities emerge that 
are more context sensitive or recollective in nature, as op-
posed to solely familiarity driven (see de Haan, Mishkin, 
Baldeweg, & Vargha-Khadem, 2006, for a review).

Simulations of Younger and Cohen (1986). Younger 
and Cohen (1986) conducted a series of experiments well 
suited for assessing infants’ abilities to form conjunctive 
codes (i.e., multiple clusters). In their experiments, infants 
were habituated to a set of sequentially presented visual 
stimuli depicting imaginary animals. The stimuli varied 
on three binary-valued attributes (e.g., the type of body 
for an animal was elephant- or giraffe-like). Importantly, 
two stimulus attributes correlated perfectly across the 
study items. After being habituated, infants were exposed 
to test items that either followed the correlated (i.e., con-
junctive) pattern of the habituation items or violated it. 
If infants formed a conjunctive code at study (i.e., dur-
ing habituation), they should find the item inconsistent 
with the conjunctive code novel and, therefore, look at it 
longer. In contrast, if infants failed to encode the attribute 
relation but, instead, encoded only attribute value (i.e., 
feature) frequencies, both the consistent and the inconsis-
tent test items should be equally interesting to the infants 
and should yield equal looking times.

The design of Younger and Cohen’s (1986) Experi-
ment 2 is shown in Table 1, and the basic findings, along 

with SUSTAIN’s fit, are shown in Figure 7.4
 
Four-month-

old infants’ looking times for the consistent and the incon-
sistent items were equal, whereas 10-month-old infants 
devoted more time to the inconsistent item than to the con-
sistent item.5

 
SUSTAIN displayed this same pattern. As in 

the previous simulations comparing amnesic patients and 
controls, the group with lower PFC–MTL function (in this 
case, the 4-month-olds) were modeled with a lower setting 
of the hippocampal function parameter.

Figure 8 shows the spatial configuration of SUSTAIN’s 
clusters, relative to study and test items. In the simulation for 
4-month-olds (shown in the left plot of Figure 8), SUSTAIN 
recruited a single cluster. The single cluster represented the 
average of the four study items (i.e., the feature frequencies). 
This single cluster was located in the center of the space and 
was equidistant from both the consistent and the inconsistent 
test items. Given this configuration, SUSTAIN predicted 
that both of the test items would be equally familiar.

In the simulation for 10-month-olds (shown in the right 
plot of Figure 8), SUSTAIN recruited two clusters. Each of 
these two clusters represented the average of two of the four 
study stimuli. One cluster represented the average of stim-
uli 1 1 2 and 1 1 1 (located at 1 1 1.5), whereas the other 
represented the average of stimuli 2 2 2 and 2 2 1 (located 

Table 1 
The Abstract Structure of Younger and Cohen’s (1986) 

Experiment 2

 Study  Test  

1 1 1 2 2 2 (consistent)
1 1 2 2 1 2 (inconsistent)
2 2 1
2 2 2 

Note—The first two attributes of the study items correlate perfectly. 
After being habituated for 12 trials during study, participants viewed the 
consistent test item (which obeys the studied correlation) and the incon-
sistent test item (which violates the studied correlation).
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6

8

10

12

14

4-month-old infants

SUSTAIN 4-month-old

SUSTAIN 10-month-old

Lo
o

ki
n

g
 T

im
e 

(s
ec

)

10-month-old infants

Figure 7. Looking times for 4-month-old and 10-month-old in-
fants in Younger and Cohen’s (1986) Experiment 2, along with 
SUSTAIN’s fit.
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at 2 2 1.5). In this case, the inconsistent test stimulus was 
farther from the nearest cluster than was the consistent test 
stimulus. This effect was magnified by SUSTAIN’s shift of 
attention to the two correlation-relevant attributes. These 
two clusters effectively encoded the conjunctive relation-
ship between the first two attributes of the study items.

These simulations closely parallel the simulations of 
Knowlton and Squire’s (1993) data. Both young infants 
and amnesic patients are sensitive to feature frequency, but 
not to feature relations. Perhaps an even closer parallel to 
Younger and Cohen’s (1986) experiments is Save, Poucet, 
Foreman, and Buhot’s (1992) experiments, in which rats 
were habituated in an environment consisting of multiple 
objects. After familiarizing themselves with the environ-
ment, the rats’ rate of exploration declined, much as the 
infants in Younger and Cohen’s study habituated to the 
stimuli during the study phase. Once the rats had been 
habituated, the experimenter altered the configuration of 
objects. The rats with an intact hippocampus once again 
found their environment engaging and increased their rate 
of exploration, which is analogous to the 10-month-olds’ 
reaction to the inconsistent test item. However, the rats 
who had their hippocampus lesioned did not increase their 
rate of exploration, which is analogous to the 4-month-
olds’ lack of differentiation between the consistent and the 
inconsistent test items.

Aging and Category Learning
Aging does not affect the brain uniformly. Imaging and 

neuroanatomical studies have revealed greater shrinkage 

in the hippocampus and PFC than in other areas, such as 
the parietal and occipital cortex (Flood & Coleman, 1988; 
Raz, 2000). These declines should impact our proposed 
PFC–MTL learning circuit, and therefore, we predict that 
older individuals will show deficits in tasks that require 
constructing conjunctive codes (see Davidson & Glisky, 
2002; Li et al., 2005).

The hippocampus is particularly vulnerable in the aging 
process. The hippocampus has the highest concentration of 
glucocorticoid (i.e., cortisol) receptors in the central ner-
vous system (McEwen, Weiss, & Schwartz, 1968). Cortisol 
released in response to agitating or stressful episodes (e.g., 
illness, trauma, surgery, temperature extremes, depressive 
states, or anxious moods) leads to hippocampal shrinkage 
and loss of function. One possibility is that the aging ef-
fects seen in the hippocampus result simply from the ac-
cumulation of negative events over an individual’s life.

Supporting this notion, an MRI study of humans has 
shown that hippocampal atrophy is the anatomical cor-
relate of delayed recall performance in older adults 
(Golomb et al., 1994). Humans with prolonged elevated 
levels of cortisol showed reduced hippocampal volume 
and deficits in hippocampal-mediated memory tasks (Lu-
pien et al., 1998). Experimental manipulations of stress 
level with rats led to predicted increases in cortisol levels, 
hippocampal atrophy, and memory impairments (Land-
field, Baskin, & Pitler, 1981; Sapolsky, Krey, & McEwen, 
1986). Underscoring the importance of cortisol in cog-
nitive aging, recent work suggests that elevated cortisol 
levels may also affect frontal function in humans (Young, 
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4-month-olds, the single-cluster representation was sensitive only to attribute value (i.e., feature) frequencies.
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Sahakian, Robbins, & Cowen, 1999). Paralleling the nega-
tive effects of excessive cortisol, older adults showed re-
duced activations, relative to young adults, in the PFC and 
hippocampus during encoding (Grady et al., 1995), which 
maps onto reduced cluster recruitment (i.e., conjunctive 
code formation) in SUSTAIN.

Given these assaults on the PFC–MTL learning cir-
cuit, we predict that older adults should be impaired at 
conjunctive-learning tasks. Indeed, item memory in older 
individuals is preserved to a greater extent than is memory 
for the conjunction of item and context (see Spencer & 
Raz, 1995, for a meta-analysis). Recollection (a conjunc-
tion of item and context) and source memory are impaired 
in older individuals, whereas some studies have shown no 
impairment in judgments of familiarity (Dywan & Jacoby, 
1990; Hay & Jacoby, 1999; Titov & Knight, 1997). For ex-
ample, older adults have trouble determining at test which 
modality an item was presented in at study (McIntyre & 
Craik, 1987).

These deficits hold for other conjunctive tasks that 
involve forming arbitrary associations or conjunctions. 
Older adults are particularly bad at forming conjunctive 
codes, such as linking or associating two pictures (Chal
fonte & Johnson, 1996; Naveh-Benjamin, Hussain, Guez, 
& Bar-On, 2003). Age-related declines in hippocampal 
activation, with accompanying behavioral deficits, have 
been observed in conjunctive memory tasks (Mitchell, 
Johnson, Raye, & D’Esposito, 2000). Interestingly, such 
conjunctive tasks are not as difficult when they rely on 
preexisting associations or codes (Naveh-Benjamin, 2000; 
Hess, Pullen, & McGee, 1996). In such cases, SUSTAIN 
predicts that a new cluster is not needed, so hippocampal 
involvement should be minimal.

In the domain of category learning, Hess (1982) has 
demonstrated that older adults can abstract prototypes as 
effectively as can younger adults. Later work incorporat-
ing a distraction task showed prototype organization fol-
lowing study for both younger and older adults, with the 
younger participants having a slight advantage. However, 
the advantage was much more pronounced for a disjunc-
tive concept-learning task (Hess & Slaughter, 1986) that, 
according to SUSTAIN, requires forming multiple clus-
ters. Paralleling the amnesic findings, these aging findings 

suggest that differences between older and younger adults 
are magnified for tasks that require forming conjunctive 
codes. Consistent with this view, Ashby, Noble, Filoteo, 
Waldron, and Ell (2003) found that contrastive category-
learning tasks involving irregularly structured categories 
(requiring multiple clusters to be mastered) were more 
difficult for older adults, whereas differences between 
younger and older adults were minimal for easily describ-
able structures (also see Filoteo & Maddox, 2004).

Simulating the effects of aging on category learning. 
Ideally, a study in which younger and older adults were 
examined would utilize a single task in order to compare 
reliance on conjunctive codes both between and within 
groups. One such study (Love, 2002a; Love & Gureckis, 
2004; Love, Gureckis, & Worchel, 2007) was simulated 
with SUSTAIN. In Love et al., younger and older adults 
were trained by supervised classification learning on the 
two contrastive categories shown in Table 2. As can be 
seen in Table 2, there was an imperfect rule on the first at-
tribute of each category. For instance, if the first attribute 
was randomly assigned to size for a participant and 1 in-
dicated a small object and 2 a large object, all the items in 
Category A (except the last item) would be small. To fur-
ther cue this imperfect rule during the study phase, a hint 
was provided at the bottom of the screen (e.g., “A: size is 
large; B: size is small”). Cuing the rule increased the like-
lihood that the deficits observed in older adults are attrib-
utable to the PFC–MTL learning system, as opposed to 
working memory or hypothesis-testing learning systems. 
Participants completed 80 study trials and then completed 
a test phase consisting of the eight studied items and eight 
novel items that contained the same features as the studied 
items rearranged. In the test phase, the participants indi-
cated the category membership of the stimulus, as in the 
study phase, but the hint indicating the imperfect rule and 
corrective feedback were not provided.

The main prediction was that relative to younger adults, 
older adults should have greater difficulty learning the ex-
ception items than the rule-following items. This predic-
tion was based on modeling the older adults by reducing 
SUSTAIN’s ability to form new clusters that were similar 
to existing clusters (as in previous simulations of amnesic 
patients and 4-month-old infants). SUSTAIN predicted 
that exception items could be mastered only by forming 
separate clusters to encode these items. Because exception 
items would be fairly similar to existing clusters that cap-
tured rule-following items from the opposing category, 
SUSTAIN predicted that these items should be especially 
difficult for older adults to master.

These predictions held. The main results from the study 
phase and SUSTAIN’s fit are shown in Figure 9. Older 
adults performed equivalently to younger adults on rule-
following items but showed a large deficit on the excep-
tion items. Within the older adult group, the difficulty with 
exception items increased with age, whereas performance 
actually increased with age for rule-following items. As 
can be seen in Figure 10, SUSTAIN created separate clus-
ters for each exception in the younger adult simulations, 
allowing it to eventually master these items. In contrast, 
SUSTAIN assigned the exception items to clusters that 

Table 2 
The Logical Structure of the Stimulus Set for the Study and Test 

Phases of the Aging Study

 Category A Category B 

Study Phase
1 1 1 2 2 1 1 2
1 1 2 1 2 1 2 1
1 2 1 1 2 2 1 1
2 2 2 2 1 2 2 2

Test Phase

1 1 1 1 2 1 1 1
1 1 2 2 2 1 2 2
1 2 1 2 2 2 1 2
1 2 2 1 2 2 2 1

Note—The first attribute specifies an imperfect rule, with the fourth 
item in each category violating the rule.
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largely captured the rule-following items from the op-
posing category for the older adult simulations. For these 
simulations, SUSTAIN failed to individuate the exception 
items and treated these items as if they provided support 
for the discriminative rule. Rather than simulating indi-
vidual differences within groups, we chose to simulate 
idealized younger and older adults. Thus, SUSTAIN over-
stated the interaction between group and item type shown 
in Figure 9.

SUSTAIN clusterings for the older adult simulations 
predicted that older adults should have more abstract rule 
representations than would younger adults. As is shown in 
the lower panel of Figure 10, the clusters for the older adult 
simulations stressed the rule-relevant stimulus dimension 
and did not preserve item-specific information. This pre-
diction held. Older adults applied the imperfect rule in 
the transfer phase as often to rule-following items that ap-
peared in the study phase as they did to novel items. In 
contrast, younger adults’ rule application was influenced 
more by similarity to exemplars seen in the study phase 
(cf. Allen & Brooks, 1991), as is suggested by SUSTAIN’s 
clusterings shown in Figure 10.

These results distinguish between our approach to cap-
turing reduced function and Nosofsky and Zaki’s (1998) 
approach.6

 
Extrapolating Nosofsky and Zaki’s amnesic 

simulations to the aging data, the older adult model would 

perfectly store every example in an exemplar memory 
system, but retrieval operations would blur these exem-
plars, creating confusions between exemplars. This blur-
ring operation predicts the main result (i.e., older adults’ 
deficit centers on exception items), but it cannot predict 
the observed stronger rule-based responding with increas-
ing age. Much as Nosofsky and Zaki’s amnesic simula-
tions predict lower performance for amnesic patients in 
both recognition and categorization, with a greater deficit 
in recognition, analogous simulations of the aging data 
would predict deficits for both rule and exception items, 
with a greater deficit in exception performance.

General Discussion
The what of localization is at least as important as the 

where. For example, the shift from viewing the brain, as 
opposed to the heart, as the seat of cognition was perhaps 
the greatest advance in localizing mental function, yet it 
had little impact, in its own right, on how we understood 
human behavior. Although our understanding of cogni-
tion has advanced beyond that of the early Greeks, we still 
run the danger of amassing a list of brain areas associated 
with certain tasks in the absence of linking theories. In 
this article, we argued that localizing cognitive models 
(that simulate interesting behaviors) are our best bet for 
directing and understanding empirical research. At some 
level, every researcher is theoretically driven and relies 
on a model of how cognition works, even if that model is 
not explicitly acknowledged. We argue that the best model 
to use is one that is well specified, relatively simple, and 
verified empirically—that is, an existing cognitive model. 
Successful cognitive models best suited for this task are 
ones that stress processing and representation, as opposed 
to models that are formulated at a more abstract level, 
such as Bayesian approaches. Models that stress simu-
lation form a diverse group, ranging from connectionist 
models (e.g., SUSTAIN) to production systems, such as 
ACT–R (J. R. Anderson, Qin, Stenger, & Carter, 2004).

In this article, we applied an existing model of category 
learning from examples to findings from numerous popu-
lations, including amnesic patients with hippocampal le-
sions, infants, young adults, and older adults. The mapping 
between the SUSTAIN model and the PFC, hippocampus, 
and perirhinal cortex was simple and incomplete, yet it 
was sufficiently powerful to place findings from numer-
ous subfields into a common theoretical framework.

Our account holds that a healthy PFC–MTL circuit is 
necessary to encode conjunctive information in the form 
of clusters, which encode relations among stimulus fea-
tures. New clusters are recruited in response to surprising 
events, such as an unfamiliar stimulus in unsupervised 
learning or a prediction error in supervised learning. Thus, 
new conjunctive codes begin as episodic traces.

Individuals with low PFC–MTL function will fail to es-
tablish a new cluster when an existing cluster is somewhat 
similar to the surprising stimulus. In such cases, the surpris-
ing stimulus is assimilated into an existing cluster. Thus, 
groups varying in hippocampal function will differ in the 
granularity in which events are individuated (see Figure 1), 
with low function groups collapsing numerous experiences 
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together into a single representation (i.e., cluster). These 
low-function groups will show the greatest deficits in tasks 
that require establishing numerous conjunctive codes.

In SUSTAIN, these differences between groups are cap-
tured by a parameter related to hippocampal function. This 
parameter governs the ability of the model to form clusters 
in response to surprising events in the presence of somewhat 
similar existing clusters (see the Appendix for details). Al-
though the focus is on the hippocampus, other areas of the 
brain are critical to category learning. Activations of exist-
ing clusters are reflected by a familiarity or fit signal gener-
ated by the perirhinal cortex. The PFC monitors this signal 
to determine when a stimulus is sufficiently surprising to 
warrant the creation of a new cluster. Figure 3 summarizes 
the mapping between SUSTAIN and these regions.

Although we have argued that cognitive models offer 
a tool for determining functional localization, accepted 
views on functional localization may offer an even more 
powerful tool for selecting among cognitive models that 
successfully address behavioral findings but make con-
flicting assumptions about representation and processing. 
In cases in which these conflicting assumptions suggest 
different accounts of localization, cognitive neuroscience 
data can play a key role in selecting the appropriate cog-
nitive model. In the case of our clustering account and 
Nosofsky and Zaki’s (1998) exemplar approach, we be-
lieve the mapping between SUSTAIN and the PFC–MTL 
learning system is more satisfying than possible align-
ments we can imagine between the exemplar approach and 
the hippocampus. As has been discussed, Nosofsky and 
Zaki assumed that all exemplars are stored but are stored 
in a blurry fashion for populations with reduced function, 
so that retrieval operations coactivate numerous exem-
plars in memory. Veridically storing all exemplars (albeit 
in a fashion that promotes generalization across exem-
plars) seems at odds with modeling amnesic populations 
that lack the proposed machinery for storing exemplars. 
In contrast, our clustering account proposes an interplay 
among brain areas to determine when storage operations 
should occur (i.e., in response to surprising events), with 
the degree of preserved hippocampal function determin-
ing when desired storage operations will be successful.

Filling in the continuum. One avenue for future in-
vestigation is considering additional populations that suf-
fer from low functioning along the proposed PFC–MTL 
circuit, such as those suffering from early Alzheimer’s 
disease. Although the damage caused by Alzheimer’s dis-
ease affects numerous parts of the brain, including frontal 
areas, early cell loss is concentrated in the hippocampus 
formation (Coleman & Flood, 1987; Convit et al., 1995; 
Golomb et al., 1994). These patients exhibit the kinds of 
learning deficits we would predict (e.g., Faust, Balota, 
& Spieler, 2001; Zaki, Nosofsky, Jessup, & Unverzagt, 
2003). As has been predicted, these patients do not show 
deficits, relative to age-matched controls, on nonconjunc-
tive categorization tasks that rely on forming only one 
cluster (Bozoki, Grossman, & Smith, 2006). Finally, those 
suffering from chronic depression and exhibiting hip-
pocampal atrophy related to excess cortisol levels show 

the kind of behavioral deficits we would predict (Butters 
et al., 2000; Golinkoff & Sweeney, 1989).

In all of our simulations and discussions, we have fo-
cused on one problem in cluster formation—namely, the 
lack of it. There are many other possible disorders to ex-
plore as a cluster formation process. One possibility is 
that some groups, such as autistics, recruit new clusters 
too aggressively and this is the cause for their poor gen-
eralization beyond the training set (see I. L. Cohen, 1994; 
Klinger & Dawson, 2001). In effect, autistic patients may 
be to the right of young normals along the continuum 
shown in Figure 1.

Limits and future challenges. Although our account 
of PFC–MTL function is applicable to a wide range of 
populations, it is not applicable to all populations and 
tasks. For example, our account is silent on Parkinson’s 
patients with damage concentrated in striatal dopamine-
driven learning systems. Accordingly, our account does 
not make predictions about behavioral manipulations in-
tended to disrupt procedural learning mediated by the stri-
atum (see Ashby & Maddox, 2005, for a review of relevant 
manipulations). Finally, our account is not applicable to 
relevant populations, such as hippocampal amnesic pa-
tients, when the behavioral task primarily taps learning 
systems other than the PFC–MTL circuit. For example, 
simple rule-based tasks, such as the Wisconsin card sort-
ing task (Heaton, 1981), are likely accomplished through 
working memory systems that can be preserved in patients 
with hippocampal damage (Ashby & Maddox, 2005). One 
important direction for future work will be the develop-
ment of models that detail the interactions of numerous 
learning systems.

Beginning with a cognitive model has a number of ad-
vantages, but it is just a starting point. The next step is 
to use brain measures to modify our proposed learning 
algorithms. Given that the hippocampus is central to our 
explanation, one critical process that needs to be included 
in future modeling is consolidation. The importance of 
consolidation to memory performance has been under-
appreciated by cognitive psychologists (Wixted, 2005). 
Another example in which brain measures could influence 
model development is in work in novelty detection. As has 
been explored in this article, specifying when an event is 
surprising and results in cluster recruitment is central to 
our modeling efforts.
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NOTES

1. Forming one cluster is consistent with a lack of hippocampal 
function, because one cluster alone is not sufficient for encoding con-
junctive information. Possessing one cluster allows for the encoding 
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of feature frequencies, but not feature relations. In terms of mapping 
a single cluster representation to the brain, likely candidates for visual 
category-learning tasks are a fluency-based responding mechanism, as 
evidenced by posterior occipital deactivations (Reber et al., 1998), and 
the elemental-learning system discussed in Fanselow (1999).

2. Although it is an effective demonstration, Palmeri and Flanery 
(1999) have noted methodological flaws in Knowlton and Squire’s 
(1993) experiments that raise alternative explanations of their findings. 
Subsequent work improving upon Knowlton and Squire’s methodology 
bolsters the claim that MTL-impaired populations can learn category 
structures consisting of an underlying prototype (Bozoki et al., 2006).

3. The variability across simulations is due to the interaction of order-
ing effects with SUSTAIN’s incremental recruitment of clusters. Dif-
ferent simulations involve different random presentation orders, which 
can lead to different cluster solutions. SUSTAIN’s predictions for such 
ordering effects have been systematically explored by Gureckis and Love 
(2002) with human participants and confirmed. Because of variability 
across simulations, the results of numerous simulations are averaged 
together.

At first glance, it might seem odd for amnesic patients to be able to re-
cruit multiple clusters in the recognition task, much as it seems odd that 
Knowlton and Squire’s (1993) amnesic patients displayed above-chance 
recognition performance. One possibility is that a subset of Knowlton 

and Squire’s patients had some preserved function, since the group was 
of mixed etiology. Another possibility, previously discussed, is that the 
hippocampus may be specialized for forming conjunctive codes but that 
other regions may also perform this function (perhaps with less effective-
ness), particularly in cases in which the hippocampus is damaged. Gluck 
and Myers (2001) reviewed evidence in support of this position in the 
second chapter of their book.

4. The consistent test item shown in Table 1 was itself a study item, 
raising possible concerns. Experiments 3 and 4 in Younger and Cohen 
(1986) showed the same pattern of results when this item was removed 
from the study set. SUSTAIN successfully fits all the experiments con-
tained in Younger and Cohen (Gureckis & Love, 2004).

5. Although not central to our hypothesis, a third test item was also 
included that contained novel values on all three attributes. This item 
received the longest looking times for both groups of infants and was 
included primarily to ensure that the infants were encoding the attri-
butes of the study items in a manner consistent with the experimenters’ 
expectations. SUSTAIN also predicts that this novel item should elicit 
the longest looking times for both groups.

6. If other model parameters, in addition to the key parameter, related 
to memory fidelity are allowed to vary across simulations of different 
populations, both models are likely to capture the complete data pattern 
at the cost of explanatory power.

APPENDIX

Here, SUSTAIN’s implementation will be described, as well as the procedures used to apply it to the three 
simulations discussed in the main text.

Input Representation
A nominal stimulus attribute (as used in Younger & Cohen, 1986, and Love et al., 2007), containing k distinct 

values is represented in the model by k input units. The unit that denotes the value of the attribute is set to one, 
and all of the other units forming the attribute are set to zero. Thus, a complete stimulus is represented by Iposik, 
where i indexes the stimulus attribute and k indexes the nominal values for attribute i. The “pos” in Ipos denotes 
that the current stimulus occupies a particular position in a multidimensional representational space.

The distance µij between the ith stimulus attribute and cluster j’s position along the ith attribute is defined as
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where vi is the number of different nominal values on the ith attribute, Iposik is the position of the input stimulus 
on the ith attribute for value k, and Hj

posik
 
is cluster j’s position on the ith attribute for value k. The distance µij is 

always between 0 and 1, inclusive. Distance calculations for dot pattern stimuli will be discussed in the section 
detailing the simulation procedures for Knowlton and Squire’s (1993) simulations.

Generating a Response
Once the stimulus is encoded, clusters are activated on the basis of their similarity to the input item. The 

activation of a cluster is given by
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where Hj
act is the activation of the jth cluster, na is the number of stimulus attributes, λi is the tuning of the recep-

tive field (which implements selective attention in SUSTAIN) for the ith input attribute, and r is the attentional 
parameter (always nonnegative). At the start of learning, λi is set to 1.

Clusters compete to respond to input patterns through a process of mutual inhibition. The final output, Hj
out, 

of each cluster j is computed according to
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where nc is the current number of the clusters and β is a lateral inhibition parameter (always nonnegative) that 
regulates cluster competition.
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In supervised learning, SUSTAIN selects the cluster with the largest output value, and only this cluster is al-
lowed to pass its output, Hj

out, across the upper layer of connection weights to the final output units. The winning 
cluster, Hm, passes its output to the k output units of the unknown (queried) attribute z by

	 C w H
zk m zk m
out out=

,
, 	 (A4)

where Czk
out is the output of the unit representing the k th nominal value of the unknown zth attribute and wm,zk is 

the weight from the winning cluster, Hm, to output unit Czk. In classification learning, z is the category label. The 
value Czk

out is calculated for each of the k units belonging to queried attribute z.
The probability of making a response k (the k th nominal value) for the queried attribute z is
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where d is the response parameter (always nonnegative) and vz is the number of nominal units (and hence, output 
units) forming the queried attribute z.

Recognition and unsupervised categorization judgments are modeled in an identical fashion. In these cases, 
SUSTAIN’s response is determined by summing the output Hj

out for all clusters:
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where R is the recognition score for the current stimulus. This recognition score is a measure of the model’s 
overall familiarity for a stimulus.

Cluster Recruitment 
In all learning tasks, the initial cluster is centered on the first stimulus presentation, and additional clusters are 

recruited in response to surprising events encountered throughout learning. Newly recruited clusters are initially 
centered on the surprising stimulus (i.e., all µij will be zero for the new cluster and the current stimulus).

In supervised category-learning tasks, feedback is provided after the model makes its response. SUSTAIN 
attempts to recruit a new cluster when the winning cluster, Hm, predicts the incorrect category label. In unsu-
pervised learning, this signal to create a new cluster is generated whenever the activation of the winning cluster, 
Hm

act, is below the parameter τs. 
Not all attempts to recruit a new cluster are successful. The ability to construct a new cluster in response to 

a surprising event is proposed to be hippocampal dependent. Simulations with low hippocampal function will 
fail to recruit a cluster in response to a surprising stimulus when that stimulus is similar to an existing cluster. 
Formally, a new cluster is recruited when the activation of the winning cluster, Hm

act, is less than the value of the 
hippocampal function parameter τh. 

Note that in unsupervised category learning, the lower of the two thresholds, τs and τh, determines when a 
cluster can be recruited. Formally, these two parameters could be replaced with a single parameter. Neverthe-
less, these parameters are conceptually distinct and could be identifiable, given other data sources. For instance, 
an amnesic patient could be surprised by a stimulus but not be able to recruit a cluster to encode the stimulus. 
However, because these two parameters are not identifiable in the current simulations, we report the minimum 
of the two thresholds, min(τs,τh). On the basis of our literature review and the demands of the learning tasks 
simulated, we assume that the deficit for the groups considered here lies in hippocampal function (i.e., τh , τs), 
although the same results would hold if the deficit was in the PFC.

Learning 
Learning rules are applied on each training trial that update the clusters and weights. On trials on which a new 

cluster is recruited, it will be selected as the winning (i.e., most activated) cluster, due to the fact that this cluster 
is centered on the current input item. Otherwise, the cluster most similar to the stimulus will be the winner. For 
the winning cluster Hm, the position of the cluster is adjusted by

	 ∆H I H
m m

ik ik ikpos pos pos= −( )η , 	 (A7)

where η is the learning rate parameter. Thus, the winning cluster moves toward the current stimulus. This learn-
ing rule tends to center the cluster amid its members. 

Receptive field tunings (which implement attribute attention) are updated according to

	 ∆λ η λ µλ µ
i i im

e i im= −( )− 1 , 	 (A8)

where m is the index of the winning cluster. Only the winning cluster updates the value of λi.



Localizing Cognitive Models        107

APPENDIX (Continued)

In supervised category learning, the one-layer delta learning rule (Rumelhart, Hinton, & Williams, 1986) is 
used to adjust weights from the winning cluster to output units:

	 ∆w t C H
m zk zk zk m,

,= −( )η out out 	 (A9)

where z is the queried attribute (i.e., the category label in classification learning).

Simulation Procedures
In the following section, we will provide simulation details for each reported study. Simulations were con-

ducted in a manner that paralleled the procedures used for human participants. For example, in each study, the 
number of learning trials and randomization procedures for SUSTAIN simulations matched the experiences of 
human participants.

Instead of fitting each study individually, we used a single set of core parameters across all three studies. These 
core parameters (r 5 2.844, β 5 2.386, d 5 12.000, and η 5 .093) were set to the global parameters reported in 
Love et al. (2004) that enabled SUSTAIN to correctly predict patterns of human performance across a wide range 
of studies. Other decisional parameters (which effect quantitative fit, but not qualitative predictions) varied across 
the three simulations reported here. All of these peripheral parameters will be discussed in the sections below 
devoted to particular simulations. Of course, the τh parameters necessarily varied across studies. Unfortunately, 
scaling issues with particular stimuli types prevent the direct comparison of τh values across studies.

Knowlton and Squire (1993). Stimuli were random dot patterns as shown in Figure 4. Because these 
stimuli do not contain nominal attributes or features, input to the model was a set of Cartesian coordinates that 
described the location of each of the nine dots in a 50  50 pixel grid. A complete stimulus was defined by a set 
of nine tuples, each of which specified the location of one dot in the stimulus pattern. The same representation 
characterized cluster positions.

The distance between the current stimulus and cluster Hj was determined by first calculating the average 
distance between pairs of corresponding dots in both patterns. Correspondences between dots were determined 
by attempting to minimize the average distance over all possible permutations of dot correspondences. Unfor-
tunately, determining these correspondences is computationally demanding, because there are 9! 5 362,880 
ways to map the nine dots, all of which have to be searched to find the minimum average distance on each trial 
for each cluster. To approximate this exhaustive computation, a greedy heuristic was used that placed two dots 
in correspondence one at a time on the basis of the closest pairs. At each step of the greedy algorithm, the two 
dots with the shortest Euclidean distance between them were placed in correspondence and then removed from 
consideration. This simple algorithm was able to recover the minimal mapping (out of 362,880 possible map-
pings) 33% of the time. Furthermore, nonoptimal correspondences closely approximated optimal solutions. 
For example, we computed the distance between 10 test patterns against 10 random training patterns (100 total 
comparisons) and found that the true average distance for this set was 4.3, whereas the greedy method yielded 
an average distance of 4.8. In comparison, random dot correspondences yield an average distance of 11.0.

Following Smith and Minda (2001), the log of this average dot distance plus 1 (to ensure positive distances) 
served as our psychological distance measure µ1j, replacing Equation A1 which was used in the case of nominal-
valued attributes. With only µ1j serving as input, Equation A2 reduces to

	 H e
j

c jact = −λ µ1 , 	 (A10)

where Hj
act is the activation of the jth cluster and λc is a dot pattern generalization parameter that controls the 

gradient of generalization in the model. In the best-fit results shown in Figures 5 and 6, there was no learning 
on this dot pattern generalization parameter, and it was treated as a parameter that differed between the catego-
rization (λc 5 0.8) and recognition (λc 5 1.3) tasks. Critically, amnesic patients were modeled as having lower 
setting of the hippocampal parameter, relative to controls [min(τs,τh) 5 .053 vs. .13, respectively].

Both categorization and recognition responses in the model were computed using the following response 
function:

	 P R
R k

( ,endorsement) =
+
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where P(endorsement) is the probability that the stimulus is judged as old in the recognition task or as a mem-
ber of the category in the categorization task. The recognition score, R, is computed according to Equation A6. 
The response criteria parameter, k, was held constant (k 5 .19) across tasks. Thus, there was one parameter 
[min(τs,τh)] that differed between the simulated groups and another (λc) that differed between tasks; otherwise, 
each simulated condition was identical. In this sense, our approach to simulating this data set bears a strong 
resemblance to previous efforts (Nosofsky & Zaki, 1998; Smith & Minda, 2001). However, we also considered 
the ability of SUSTAIN to account for these data using only a single parameter, min(τs,τh), by allowing it to learn 
the value of λc over the course of training according to Equation A8. Given an initial setting of λc 5 0.47 and k 5 
.26 across all tasks and populations allowed the model to provide a similar fit [in these simulations, min(τs,τh) 
was .24 and .27 for amnesics and controls, respectively].
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Younger and Cohen (1986). Four-month-old infants were modeled as having lower setting of the hippocam-
pal function parameter, relative to 10-month-olds [min(τs,τh) 5 .10 vs. .67]. All other parameters were shared 
by both groups. At the end of the study phase, looking time was predicted by SUSTAIN’s recognition score (see 
Equation A6). More familiar items were assumed to predict shorter looking times. Absolute looking time (in 
seconds) was calculated by linearly regressing mean infant looking times with the average recognition scores 
[R2 5

 
.96; F(1,2) 5 47.5, p , .03].

Love, Gureckis, and Worchel (2007). Older adults were modeled as having lower setting of the hippocam-
pal function parameter, relative to younger adults (τh 5 .07 vs. 1.00). All other parameters were shared by both 
groups. The parameter τs is not germane, because surprising events were mispredictions in supervised learning. 
One additional parameter, λdistinct, was necessary for these simulations, due to the fact that the rule-relevant 
dimension was cued throughout the study phase and, therefore, was likely to be more salient to participants. At-
tention on this particular attribute was fixed (λdistinct 5 5.1) throughout the simulations instead of being initially 
set to 1 and updated by Equation A8.
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