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Abstract

From navigation in unfamiliar environments to career plan-
ning, people typically first sample information before com-
mitting to a plan. However, most studies find that people
adopt myopic strategies when sampling information. Here we
challenge those findings by investigating whether contingency
planning is a driver of information sampling. To this aim, we
developed a novel navigation task that is a shortest path find-
ing problem under uncertainty of bridge closures. Participants
(n = 109) were allowed to sample information on bridge sta-
tuses prior to committing to a path. We developed a computa-
tional model in which the agent samples information based on
the cost of switching to a contingency plan. We find that this
model fits human behavior well and is qualitatively similar to
the approximated optimal solution. Together, this suggests that
humans use contingency planning as a driver of information
sampling.
Keywords: Planning; Uncertainty; Decision-Making; Markov
Decision Process

Introduction
Acquiring information for the purpose of planning is com-
mon in the real world; ranging from navigation to searching
for information to plan one’s career. Such information acqui-
sition typically serves to avoid large costs, such as avoiding
a time-consuming traffic jam, or choosing an education that
does not prepare for a desired profession. In this study, we
examine how contingency planning drives information sam-
pling. We operationalize planning as the mental simulation
of potential futures, and consider uncertainty that arises from
incomplete knowledge of the environment. We define a con-
tingency plan as an alternative when the original plan turns
out to be infeasible or too costly. For example, in navigation,
taking a detour after encountering a roadblock can be seen as
a contingency plan. Importantly, the cost of switching to a
contingency plan can be high, e.g., having to turn back and
drive far back to access an alternative route. The basic hy-
pothesis of the current study is that people efficiently collect
information to reduce the costs of switching plans.

If sampling information for the purpose of planning is in-
deed governed by the cost of switching to the contingency
plan, then sampling information for planning is a form of ‘in-
terested active sampling’ (Chambon et al., 2020; Gureckis
& Markant, 2012; Markant & Gureckis, 2014; Rouault et
al., 2021). Interested sampling specifies that the sampling
decisions are guided by the economic utility of the informa-
tion. In contrast, disinterested sampling specifies that agents

sample to reduce uncertainty about the world (i.e., reduce en-
tropy) without considering the economic utility of the sam-
ple. The distinction between “interested” and “disinterested”
sampling has been an open question in the literature on in-
formation sampling for several decades (Chater, Crocker, &
Pickering, 1998; Gureckis & Markant, 2012; Coenen, Nel-
son, & Gureckis, 2019). The present work adds to this ques-
tion by assessing, specifically, if people value information to
avoid costly replanning.

Intuitively, sampling information to avoid costly replan-
ning seems to be a natural part of intelligent human behavior.
For example, when travelling in an unfamiliar area, people
gather information to determine how to reach their destina-
tion rather than taking a trial-and-error approach. Despite its
ubiquity, planning paradigms within cognitive science (e.g.
those described in (van Opheusden & Ma, 2019)) do not typ-
ically allow for sampling along a future plan. Decision mak-
ing is usually about which next step to take, whereas in many
everyday tasks we can consider a plan in advance and take
actions to reduce uncertainty about the possible roadblocks
in that plan.

We study a particular class of planning under uncertainty
tasks called the Canadian Traveler problem (Papadimitriou &
Yannakakis, 1991). Specifically, the task is to reach a goal
while minimizing travel distance in a known graph but with
parts of the roads (bridges) that might be blocked and there-
fore untraversable (by avalanches caused by heavy snowfall).
Bnaya, Felner and Shimony (2009) developed a generaliza-
tion of this paradigm that allows for sampling information,
with the goal to minimize the sum of travel cost and sampling
actions. In the current study, we take this approach to exam-
ine information sampling for the purpose of planning. The
task is realistic, intuitive, and complex while still tractable to
computational analysis.

Methods
Participants and procedure We collected data online from
109 participants via Amazon MTurk. After signing the con-
sent form, participants completed our task, followed by the
Barratt Impulsiveness Scale-11 (BIS-11; Patton et al., 1995),
which measures trait impulsivity and the Future Orientation
Scale, which measures the degree to which individuals per-
ceive, anticipate, and plan for the future in daily life (Stein-
berg et al., 2009). These two questionnaires were included to



assess whether the information sampling choices in our task
correlated with planning in daily life. Since planning requires
reasoning about future states, planning was expected to be in-
versely correlated with trait impulsivity.

Sheep Traveler Task is based on the structure of the
original Canadian Traveler Problem (Papadimitriou & Yan-
nakakis, 1991; Bnaya et al., 2009). We programmed the task
in C#, using the Unity game engine for visualization. For
each puzzle, participants viewed a map of bridges consisting
of 10-60 bridges, their avatar’s position ( Figure 1, sheep),
and a goal (Figure 1, flag). They were asked to navigate the
avatar to the goal in as few actions as possible. Crucially, the
status of a bridge could be “open”, “closed”, or “unknown”.
All bridges were “unknown” at the start of a new puzzle.
The task consisted of two stages, in stage 1, the participant
could sample the status of up to ten bridges anywhere in
the puzzle. Once the participant had either sampled the
status of ten bridges or clicked a button to indicate being
finished with sampling, they enter stage 2. In stage 2, the
participant had to get the sheep to the goal by moving it
across bridges. For unknown bridges, the status (open or
closed) was revealed when the participant tried to move the
sheep over it. An action in stage 1 was sampling a bridge’s
status, in stage 2 an action was a move or attempt to move the
sheep across a bridge. Each action incurred a cost of $0.05.
The task was completed after 85 puzzles, then 3 puzzles
were pseudo-randomly chosen and their summed cost was
subtracted from a $8.50 participation fee. Participants were
told that some bridges cause a long detour when closed, so
they could keep the cost lower by sampling wisely in stage
1. Participants were informed of the probability that a bridge
was closed was 0.2 and that all closures were independent
of each other. They completed 10 practice puzzles to
familiarize themselves with the task and the probability of
closed bridges. This was followed by a quiz to check the
comprehension of the instructions before starting the task.
An incorrect response on the quiz led the participant back to
the tutorial. Participation was terminated if there were more
than 3 incorrect attempts. Otherwise, the main task with 85
puzzles started. The order of the puzzles was randomized per
participant.

The puzzle finished when: a) the sheep avatar reached the
target; b) when the bridges of known status showed with cer-
tainty that the puzzle had no solution (i.e., the sheep cannot
reach the goal). The puzzles (bridges, the sheep’s starting po-
sition, goal location, and a hidden bridge status map) were de-
signed to distinguish between the (near-)optimal solution and
a myopic policy. Specifically, puzzles were designed such
that a myopic policy would result in less reward.

Computational model The task can be described as a
Markov Decision Process with a large state space. In stage 1,
actions, a, are remote samples. In stage 2, actions are moves
to an adjacent node and attempts to do so. The state, s, is

defined by the combination of the avatar’s location and board
state. The board state is the collection of locations and sta-
tuses of all bridges which can be unknown, open, or closed.

Our main model accounts for actions in both the remote
sampling stage and the moving stage. The intuition for the
model is that people think about the possible paths that they
could choose from in the moving stage. On those paths
they evaluate how long the detour would become if a given
bridge is closed. This allows the model to identify bottle-
necks, which are bridges that would cause a long detour when
closed. These two aspects of the model are then combined
such that bridges on paths with a shorter effective length and
long potential detour are more likely to be sampled in stage
1. These evaluations and sampling continue until the potential
detour is shorter than a free parameter (a stopping threshold)
or ten samples, which is the maximum samples per puzzle. In
stage 2, the agent chooses a path proportional to the effective
length.

Formally, we define a path, P, as a contiguous set of non-
closed bridges without repetitions (without moving back and
forth), leading from the avatar’s current location to the goal
location. The state of a bridge on a traversable path is open
or unknown. We denote the set of the states of all the bridges
along a path P by SP. We define the effective length L of a
path as

L(P,SP)≡ Nopen(P)+ωNunknown(P), (1)

where Nopen and Nunknown are the numbers of open and un-
known bridges in the path, respectively, and the number
of unknown bridges on the path is weighted by an un-
certainty aversion parameter ω. The uncertainty aversion
heuristic is based on well-established findings in the field of
risky decision-making, showing that people prefer to choose
options with a known probability of winning over an un-
known probability of winning, known as the Ellsberg paradox
(Ellsberg, 1961).

The value of a path is its negative effective length, biased
by a preference k for paths on which bridges were previously
sampled:

Vpath(P,SP) =−L(P,SP)+ k χP, (2)

where χP = 1 for all paths P that contain any previously sam-
pled bridge and 0 otherwise.

We assume that the probability of choosing path Pi is given
by a softmax on this path value:

p(choose Pi) =
eβpathVpath(Pi,SPi )

∑
j

eβpathVpath(Pj ,SPj )
. (3)

Note that the participants do not explicitly have to indicate a
path but rather, they choose bridges to sample. It is assumed
that these bridges are on paths that they consider for moving
the sheep to the goal.

We now consider what happens when sampling causes the
status of an unknown bridge, indexed by j, on a path P to
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Figure 1: Example of sampling strategies in a small puzzle in the remote sampling in the Canadian Travel Task. The upper
row (a) shows an agent who selects a highly informative sample, as discovering that this bridge is closed saves the agent from
having to take a long detour. The lower row (b) shows an agent who selects a less informative sample, as this sample does not
save the agent from a long detour in stage 2, even if it were closed. The sampling strategies influence the reward, as agent ”a”
ends the puzzle with a lower total cost than agent ”b”. In the actual task, the puzzles consisted of more bridges than in this
example.

change to open or closed. If it were to change to open, the
path P would remain valid but the status SP would change
to S′P, j. If it were to change to closed, then the agent would
have to consider an alternative path P′j, which we will refer
to as a detour. This detour length is given by the path length
to bridge j plus the shortest path from bridge j to the goal
under the assumption that all unknown bridges are open. We
then calculate the cost incurred by taking the detour as the
difference between the effective length of the detour if the
jth bridge were closed and the effective length of the original
path if that bridge were open:

∆L j(P) = L(P′j,SP′j
)︸ ︷︷ ︸

length of detour

− L(P,S′P, j)︸ ︷︷ ︸
length of primary path

. (4)

(In the special case that a closed bridge results in an un-
solvable puzzle, ∆L j(P) is the length from the agent to that
bridge.) To compute the expected detour cost of bridge j, we
then consider all paths Pi that run through j, weighting them
by the probability that the path on which the bridge lies is
actually chosen:

E [∆L j] = ∑
i

φi j p(choose Pi)∆L j(Pi), (5)

where φi j = 1 if path Pi passes through bridge j and φ = 0
otherwise. We now define a value function for bridges. The
value of sampling bridge j is

Vj = E [∆L j]−λd j, (6)

where d j reflects the (shortest) distance from bridge j to the
position of the avatar, measured along open and unknown
bridges. This “near avatar bonus” accounts for the fact that
some people might have a preference for sampling closer to

the avatar than on other bridge locations along a path. Indeed,
people sometimes adopt myopic strategies when sampling in-
formation (Schulz & Gershman, 2019). Such myopic behav-
ior is usually not optimal in our task because it does not save
you from a long detour.

We assume that the probability to stop sampling before all
ten samples are used is a softmax function of the highest un-
known bridge value:

p(a = stop|S) =

(
1+ e

−βstop,0+βstop,1 max
j

Vj
)−1

. (7)

Where βstop,0 is the stopping intercept and βstop,1 is the soft-
max temperature. Finally, if the agent does sample, we as-
sume that the sampling probabilities are given by a softmax
on the bridge values:

p(a = sample bridge j|S,a 6= stop) ∝ eβbridgeV j . (8)

The full model has seven free parameters: ω, k, d j, βpath,
βbridge, βstop,0, and βstop, 1. The model was fitted with the
fmincon function in Matlab using 100 random initializations
to avoid local minima.

Alternative detour models We fitted the full model de-
scribed above and compared this to all versions without the
three heuristic free parameters. Specifically, we compared
the full model to the model without: 1. uncertainty aversion
ω, 2. the preference to keep sampling on the same path k,
3. the near avatar bonus d j, 4. uncertainty aversion and the
near avatar bonus, 5, uncertainty aversion and the same path
preference, 6. same path preference and near avatar bonus, 7.
uncertainty aversion, same path preference, and near avatar
bonus. For model comparison, we computed the 95% confi-
dence interval of the median difference in BIC between the



full model and each lesion model. We used bootstrapping
implemented in the R package “boot”. We consider the dif-
ference not significant if the interval contains 0.

Alternative heuristic models One alternative hypothesis is
that sampling is not driven by contingency plans, but rather
by the features of the bridge network. To test this, we devel-
oped a heuristic Feature model, in which the agent’s samples
are based on weighted graph theoretic features. Specifically,
for each bridge and on each observed state, we computed the
following four features: 1. Betweenness centrality, which is
the number of shortest paths from the sheep to the goal that
run through the bridge, 2. Distance to avatar, which is the
number of bridges between the current bridge and the avatar
using the shortest not closed path, 3. Detour length, which is
the shortest detour length from the current bridge to the goal
if the current bridge were closed, 4. Degree, which is the
number of connected bridges to the nodes attached to the cur-
rent bridge. The model uses a weighted sum of these features,
augmented with a constant term to determine Vj, the value of
bridge j. The probability of stopping is given by Eq. (7), and
the probability of sampling is given by:

p(a = sample bridge j|S,a 6= stop) ∝ eV j . (9)

For this model, we also fitted the full model and compared
this to all versions with dropped-out features using the 95%
CI of the median BIC difference.

Approximating optimal behavior
Due to the large state space, computing the optimal solution
through dynamic programming is near-intractable. We there-
fore approximate the optimal policy using Monte Carlo Tree
Search (MCTS) and use its performance as a benchmark for
human behavior (Silver et al., 2016). MCTS is a decision tree
search algorithm in which evaluation of a node is done by
simulating actions until the game ends, the reward is then de-
termined and backpropagated to its parent nodes. In standard
MCTS, the tree search is performed by iteratively building a
tree where the nodes represent states and the edges that con-
nect the nodes represent actions. However, in our task, an
action did not always lead to the same state. Stochasticity
needed to be introduced to the tree because actions in which
the agent sampled or attempted to cross an unknown bridge
could result in either a state in which the bridge was open,
or a state in which it was closed. Therefore, we used MCTS
for stochastic environments, in which the tree had alternating
action nodes and chance nodes (Veness, Ng, Hutter, Uther, &
Silver, 2011). Action nodes describe the action space (i.e.,
all legal moves in the current state), and can these can have
two child nodes, called chance nodes, which represent the re-
sulting state (i.e., one node for an open bridge and one for
a closed bridge). A single iteration can be described in four
steps:

1. Node selection. A node is chosen for expansion

2. Expansion. The node is expanded by simulation

3. Rollout. A game is simulated until an end state is reached
(either the sheep reached the goal or when it is proven that
the sheep cannot reach the goal). We applied greedy roll-
outs with exploration noise to avoid bias in the trees.

4. Backpropagation. The reward is backpropagated up the
tree to update the value of the parent nodes. The reward
is the negative number of actions in stage 1 and 2 com-
bined, as the task goal was to minimize the total number of
actions. The visit count of the parent nodes is also updated
by 1.

We ran the algorithm for minimally 100,000 iterations per
node, calibrated to ensure that a stable policy is reached. The
Upper Confidence Bound for Trees (UCT) was used to choose
the node to expand (Kocsis & Szepesvári, 2006). UCT bal-
ances between exploitation of promising nodes and explo-
ration of less often visited nodes. The leaf node with the
highest UCT value was selected for expansion. The UCT for-

mula is as follows: UCT = −Li
Ni

+ c
√

ln(Ni)
ni

, where Li is the
cumulative number of actions of all games played at node i
to complete the puzzle. ni is the number of visits to node i,
Ni is the total number of visits to the root node, and c is the
exploration weight, here set to 25 (corresponding to the theo-
retically optimal weight of

√
2 expected actions) to avoid bias

in the tree.
The resulting MCTS policy is not fully deterministic, for

example when a state contains action nodes in which visit
counts are uniformly distributed. We therefore generated data
of 100 MCTS agents to compare their policy to human data.

Results
How much information did people sample? We were first
interested in how often people sampled information overall.
In stage 1, people sampled before moving the sheep in stage
2 (m = 7.07; SD = 2.94 out of the ten possible remote samples
per puzzle). Next, we approximated the optimal policy us-
ing MCTS and compared sampling quantities between MCTS
and humans. Using a Mann-Whitney U test, we found no sig-
nificant difference in the number of samples between humans
and MCTS in stage 1 of the task (U = 814, p = 0.491). How-
ever, human participants did make more moves in stage 2 than
was approximately optimal according to MCTS (U = 440, p
= 0.002, Figure 2a) and overall took more actions to com-
plete the task than was optimal (U = 551, p = 0.02). Interest-
ingly, this suggests that humans were roughly well calibrated
to the optimal amount of information sampling but possibly
the specifics choices for these samples were not as effective
at improving the avatars movements. In addition, after sam-
pling a closed bridge, people often switched to sampling on
the new shortest path (Figure 2b). This suggests that people
switched to sampling on the next best plan after discovering
that the original plan could not lead to the goal.

Detour model shows the best fit The full model without a
preference k to sample bridges on the same path fitted best.



Figure 2: Sampling data. A. Average number of actions in each stage for humans (orange) and the optimal policy approximated
using Monte Carlo Tree Search (blue). “Samples” are the remote samples in stage 1. “Moves” are the sheep avatar’s moves in
stage 2. The error bars show the between-subjects standard error of the mean. B. The proportion of samples on the new shortest
path after sampling a closed bridge (human data). On the x-axis, 0 = the new shortest path, 1 = a path that is one bridge longer
than the new shortest path, 2= two bridges longer, etc.

This model included free parameters for uncertainty aversion
and a near avatar bonus (Figure 3). This model also fitted
somewhat better than the best Feature model (median BIC
difference = -213, 95% CI [-355,-9]). Thereby suggesting
that sampling is driven by contingency planning, rather than
the visual representation of the graph’s features.

Action-by-action fits The primary choice data for this task
are rich and high dimensional (structured on a graph and de-
pending on the agent’s position). As a result, the match be-
tween the model’s simulated data and the human data is best
evaluated on key features of the behavior. To visualize the
relationship between data and model fit, we plotted the prob-
ability of sampling an edge as function of various graph the-
ory features that best describe the relation of each bridge to
the full puzzle. We also generated data using the parame-
ter estimates of our computational model to compare this to
human data. Figure 3 shows the human data and the data gen-
erated by the fitted model as function of each graph feature.
This figure shows that the model fitted well and accounted
for qualitatively similar patterns as the human data. As ex-
pected, people preferred to sample bridges that would cause
a long detour length if closed (high detour length), were on
the shortest paths (high betweenness centrality), and had few
other bridges connected to them (low degree). The intuition
for preferring bridges that are connected to nodes with a low
degree is that alternative paths are less easily accessible from
those nodes. In an extreme case the bridge can be a bottle-
neck. As shown by the U-shaped curve for distance to avatar,
the near avatar bonus induced a bias to sample bridges that
were close to the goal, and in some cases biased to sampling
bridges that were close to the avatar (Figure 3b). The compu-
tational model also fitted human data better than the optimal
approximation derived by MCTS Figure 3). The fitted model
also performed better than a random strategy (median BIC

difference = -126 in favor of our main model, with 95% CI
[-171, -55]).

Individual differences We next characterized individual
differences in sampling strategies. By using Ward’s hierar-
chical clustering method on the Euclidean distance between
estimates in the 6D parameter space, we found similarities
between subjects that translate into distinct behavioral strate-
gies. Specifically, we found three distinct sampling strate-
gies; sparse sampling near the goal, sampling from the goal
towards avatar on the shortest path, sampling from the avatar
towards the goal on the shortest path. Out of these three
strategies, sparse sampling near goal was the least prevalent
(about 10% of the subjects), while the other two strategies
were almost evenly prevalent. In our puzzles, sampling from
the goal towards the avatar is usually the better strategy as it
can save the agent from having to take a long detour. Sam-
pling from the avatar towards the goal, however, might reflect
a myopic strategy.

We found a modest negative correlation between scores on
the Future Orientation Scale and the near avatar bonus pa-
rameter (r = -0.275, p = 0.006). This shows that people who
are less future oriented in their daily lives also sampled more
myopically on the task. There were no significant correla-
tions between uncertainty aversion estimates and the scores
on the Future Orientation Scale or between trait impulsivity
as measured with the BIS-11 and either of the two parameter
estimates (all p ≥ 0.18).

Discussion

We aimed to identify guiding principles by which people
sample for the purpose of contingency planning. Past stud-
ies have established that people rarely consider a longer time
horizon when determining the sequence of information sam-
pling (Meder, Nelson, Jones, & Ruggeri, 2019; Ma, Sanfey,



a) Detour model comparison b) Feature model comparison

c) Model fits

Figure 3: Model comparisons and model fits. A. Detour model comparisons. B. Feature model comparisons. The x-axis shows
the 95% CI of the median BIC difference, which was computed using bootstrapping. A larger BIC difference indicates a better
fit. The difference is not significant if the 95% CI contains zero. A. model comparisons for the Detour model. B. Model
comparisons for the Feature model. C. Data and model fit as function of the four graph features. The black line graph with
error bars show the man and SEM of the human data using quantile bins. The shaded area depicts the SEM of the generated
data using the fitted model using the same bin centers as the human data. Red shaded region = Detour model. Blue = Feature
model. Grey = the optimal policy approximated using MCTS. Note that the y-axis range of the detour length plot is larger.

& Ma, 2020). Instead of planning ahead for their information
search they tend to adopt a myopic strategy, which is subop-
timal (Nelson, Meder, & Jones, 2018). Yet, information sam-
pling is often instrumental to planning and planning requires
thinking about future states. In daily life, people often gather
information to determine if their plans may or may not come
to fruition. We designed a novel planning task that allows
for information sampling prior to committing to a plan. In
this task, the utility of a sample can be determined by think-
ing about one’s future states in a given plan and compute the
cost of switching to a contingency plan. The utility of the
sample then increases with the cost of switching to a contin-
gency plan. Using this task and a computational model of
contingency planning, we find that people do in fact iden-
tify information that is relevant over a longer time horizon
when they sample for the purpose of planning. This concept
is somewhat distinct from the question if people use stepwise
or optimal information utilities to guide search but does show
how representations of future actions can structure informa-
tion sampling.

The samples generated by our computational model of con-
tingency planning were qualitatively similar to the approxi-

mated optimal solution derived with MCTS, and far outper-
formed a random strategy. We found that the computational
model fitted human behavior reasonably well and better than
a model in which the agent samples based on graph theo-
retic features, suggesting that people use the cost of switch-
ing to contingency plans to guide their sampling decisions.
We added two heuristics to the final model; uncertainty aver-
sion and a near avatar bonus. These improved the model fit,
showing that people tend to avoid paths with a higher uncer-
tainty and sometimes look insufficiently ahead. Insufficiently
looking ahead was ostensibly sensitive to individual differ-
ences and related to diminished orientation to the future in
daily life. Importantly, adding these heuristics does not abol-
ish the effect of detour length, demonstrating that people use
the costs of contingency plans to determine where to sample.
A third heuristic, the bias to keep sampling on paths on which
previous samples were drawn, did not improve the model fit
and was therefore not included in the final model.

A recent study proposed that active information seeking
reveals which plans an individual considers, as information
search is directly observable whereas planning itself is not
(Callaway et al., 2021). This paper used a navigation un-



der uncertainty task in which information about rewards and
losses associated with road sections could be sampled. In
contrast to our work, they found that sampling was strongly
influenced by a myopic bias similar to our “near avatar
bonus”. This discrepancy might be due to the fact that we
intentionally designed our task to test whether contingency
planning drives sampling. This resulted in puzzles in which
some paths had a much higher cost of switching to the con-
tingency plan (i.e., longer potential detour) than others.

One critical element of our model is the identification of
the shortest paths and identifying the approximate length of
the detour. It is likely that these computations are imple-
mented efficiently by the perceptual system. Earlier work
on human performance on the Traveling Salesman problem
shows that humans far outperform simple construction algo-
rithms, for review see (MacGregor & Chu, 2011). People also
perform much better in terms of solution speed and accuracy
when the Traveling Salesman problem is visually presented
than when it is presented as a table with intercity distances
(Polivanova, 1974). Nevertheless, a resource rational model
of sampling for contingency plans might be a more realistic
account. In future work this can for example be achieved by
adding a pruning parameter to the model (Huys et al., 2012)
such that the agent considers only a limited number of paths.

Information sampling studies typically show that people
adopt myopic strategies when sampling information. Here
we show that information sampling and planning are tied to-
gether and that people do consider their future states when
sampling for the purpose of planning. Our work thereby con-
nects the planning and sampling literature.
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