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Abstract
A critical aspect of human cognition is the ability to actively
query the environment for information. One important (but
oen overlooked) factor in the decision to gather information is
the cost associated with accessing different sources of informa-
tion. Using a simple sequential information search task, we ex-
plore the degree to which human learners are sensitive to vari-
ations in the amount of utility related to different potential ob-
servations. Across two experiments we nd greater support for
the idea that people gather information to reduce their uncer-
tainty about the current state of the environment (a “disinter-
ested”, or cost-insenstive, sampling strategy). Implications for
theories of rational information collection are discussed.
Keywords: information sampling, active learning, information
access costs

Introduction
From controlling the movement of our eyes to determining
which sources of news to consult, judging the quality of al-
ternative sources of information is a critical part of adaptive
behavior. Research exploring how people make information
gathering (or “sampling”) decisions has shown that people can
discern subtle differences in the potential information value
of various aspects of the environment. For example, measure-
ments of eye movements during object categorization show
that people preferentially allocate attention to object features
that aremost useful formaking subsequent classi cation deci-
sions (c.f., Nelson & Cottrell, 2007; Rehder & Hoffman, 2005).

One aspect that typically complicates the analysis of infor-
mation sampling behavior is that information rarely comes for
free. All natural tasks involve information access costs, even
if the only cost is the time required to gather information (Fu,
2011). In addition, different pieces of information may be
more useful depending on how one will be tested in the fu-
ture. Optimal search behavior must weigh the costs of collect-
ing particular bits of information against the bene t it is ex-
pected to convey (Edwards, 1965; Juni, Gureckis, & Maloney,
2011; Tversky & Edwards, 1966), a point frequently made in
research on animal foraging (Stephens & Krebs, 1986).

Despite its importance, previous work on information sam-
pling has oen failed to test whether people take into account
costs related to different sources of information. For exam-
ple, Nelson (2005) provides a comprehensive review of various
ways an optimal Bayesian agent might value potential infor-
mation sources in the absence of task-speci c costs (see also
Nelson et al., 2010). One conclusion from this line of work is
that people make information search decisions that are con-
sistent with normative measures of information value (many
of which oen make similar predictions). For example, Nel-
son et al. (2010) studied information sampling in a diagnostic

reasoning task where the predictions of these measures could
be readily distinguished. Learners who could query different
stimulus features before making classi cation decisions were
found to prefer to learn about features that maximized prob-
ability gain, a measure of how well a potential observation is
expected to improve classi cation accuracy.

In these studies, however, costs were not explicitly manip-
ulated or controlled. Taking costs into account can alter the
optimal strategy in a given task, but it is unclear whether peo-
ple adjust their behavior in a similar way. e goal of the
present paper is to explore the impact of costs on sampling de-
cisions. We begin by evaluating two alternative objectives that
people may adopt when deciding what information to gather.
Like the models reviewed by Nelson (2005), the rst ignores
the implications of task-speci c costs and casts information
sampling strictly in terms of uncertainty reduction (i.e., in-
formation gain). e second approach balances the costs and
expected bene ts of information in the context of the task.
We then describe the results of two experiments that manip-
ulate the concordance between these two approaches, in one
case creating an environment where the goals of minimizing
uncertainty and maximizing utility predict different patterns
of information sampling. Our results show that people tend
to value information (in terms of the number of hypotheses
ruled out by a new observation) over situation-speci c costs
and bene ts. e implications of these results for theories of
information sampling are discussed.

e rational analysis of information sampling:
comparing “interested” and “disinterested” search

How should a rational agentmake information sampling deci-
sions? Existing proposals fall into two broad categories which,
borrowing from Chater, Crocker, and Pickering (1998), we
call “interested” and “disinterested.” Unlike the distinctions
explored by Nelson (2005), these two proposals differ signi -
cantly in terms of the overall goal of information sampling.
Interested (or cost sensitive) sampling e rst approach
represents a decision-theoretic approach to information sam-
pling. In particular, the agent considers the cost for collecting
a piece of evidence andweighs this against the expected bene t
it should convey with respect to the goals of the task. For ex-
ample, a car shoppermight decide if the possible savings avail-
able fromobtaining information contained in a vehicle history
report is worth the cost of the report. Similarly, preferentially
xating the features of an object that are diagnostic of its cat-

egory membership may be a cost-sensitive strategy under the



assumption that additional xations cost time and the num-
ber of xations needed to reach a correct decision should be
minimized. Sampling in this case is “interested” in that infor-
mation acquisition is focused on some purpose or goal beside
acquiring the information itself. In many ways, “interested”
sampling is a fully rational strategy and this formulation is of-
ten adopted in economics research.

Disinterested (or cost insensitive) sampling esecond ap-
proach values information to the degree that it reduces our
uncertainty about the world. Chater et al. liken this to ba-
sic research where the goal is learning without regard for
the ultimate utility of this knowledge for society. In their
words, “inquiry is valuable for its own sake, because it leads
to knowledge” (Chater et al., p.4). Disinterested inquiry can
be conveniently expressed as actions which have a high prob-
ability of reducing the Shannon entropy over the agent’s be-
liefs (Lindley, 1956; Mackay, 1992). Critically, disinterested
inquiry doesn’t depend on the costs associated with collect-
ing information or using it to make subsequent decisions.

e basic premise of the experiments reported in this paper
is that these two strategies or ways of valuing information can
be dissociated on the basis of observed choice behavior. We
gave participants a simple, intuitive information search task
where they were asked to make sequences of decisions to re-
duce their uncertainty about a hidden target. Mathematical
models instantiating each of the two theories just described
are then t to the choice patterns of individual subjects. is
tting procedure (common in the reinforcement learning lit-

erature) allows us to evaluate which of the approaches we have
described gives the best account of participants’ choices.

e Experimental Task: e Shape Search Game
Participants in our task are presented with a  by  grid that
contains non-overlapping hidden shapes made up of individ-
ual grid cells. e hidden targets are randomly drawn from
a set that is known to the participant. ere are two phases
in each game: a sampling phase and a painting phase. In the
sampling phase, the player learns about the form and location
of the hidden shapes by choosing squares in the grid to un-
cover. On each trial, theymake an observation at one location,
revealing either part of a hidden shape or an empty square.
When they think they know the location and form of all the
shapes they can stop sampling and enter the painting phase.
In the painting phase, the player is tested for their knowledge
of the shapes by “painting” any remaining squares they believe
belong to one of the shapes in the appropriate color.

e player is penalized one point for every observation
made in the sampling phase and two points for every error
committed in the painting phase (e.g., failing to ll in a square
that belongs to a shape). ese costs promote efficient infor-
mation search in two ways. First, the observation cost dis-
courages sampling in locations whose contents can be inferred
from evidence that has already been uncovered. Second, it en-
courages continued sampling while there is still uncertainty
about the hidden shapes, since painting errors are more costly

random samples

Experiment 1: Rectangle Search

Possible Shapes Hidden Gameboard

Figure 1: e generative process underlying the shape search game.
A xed set of possible shapes is speci ed. A hidden gameboard is
created by sampling from this set of shapes and randomly arranging
the targets in the grid. During the sampling phase the participants
clicks on grid locations to reveal their contents. In the painting phase,
the subject draws in the remaining squares using the mouse and is
rewarded for accuracy.

than observations. e goal of the game is to nish with the
lowest score possible, which is achieved by learning the most
about the hidden shapes in the fewest number of observations.

Based on past work with this task (Gureckis & Markant,
2009), we have found that the overall objective of the game
is easily understood by the participants. A critical feature of
the task (which we exploit in our second experiment) is that
it allows for arbitrarily de ned targets (i.e., the target shapes
may be composed of any con guration of squares) that can be
manipulated to vary the complexity of the task.

Formal task analysis
In order to evaluate both “interested” and “disinterested” in-
formation search in the task, we compare the search behav-
ior of subjects to that of a rational learner who updates their
beliefs about the gameboard in an optimal way. Formally,
players make a sequence of observations in order to learn the
hidden gameboard, gh ∈ G, where G is the universe of legal
gameboards. Each individual gameboard is de ned by an ar-
rangement ofN non-overlapping shapes {r1, r2, ..., rN}with
unique labels {l1, l2, ..., lN}, and each shape consists of a set
of squares such that oij ∈ rn (where i and j index the x- and
y-coordinates of the square).

On each trial the player makes an observation oij and re-
ceives feedback in the form of a label ln, where l0 indicates the
observed square is empty, l1 means it contains part of shape
r1, and so on. Since each square in the grid is deterministi-
cally assigned to either one or zero shapes, we assume that the
likelihood of a particular observation oij belonging to one of
the shapes (i.e., oij = ln for n > 0) for a particular gameboard
g is deterministic (i.e., p(oij = ln∣g) = 1 if the location falls
within a target and 0 otherwise).

e prior belief about the likelihood of each individual
gameboard is represented by p(g). In our experiments, par-
ticipants were instructed that the shapes were chosen at ran-
dom and that all legal gameboards were equally likely (i.e.,
p(g) = 1/∣G∣ for all g, a uniform prior).

Bayes rule can be used to compute the posterior belief



about the identity of the hidden gameboard and to predict the
marginal probability of any point in the grid having any partic-
ular label ln (this is a very straightforward Bayesian approach
to the problem, see Gureckis and Markant, 2009).

Interested (cost-sensitive) Sampling e objective of the
game is tominimize the number of points accumulated, where
each individual observation costs Cobs points and each error
during painting costs Cerror points. Given these constraints,
we can quantify the value of observations with respect to the
overall goal ofminimizing total costs. We assume that the like-
lihood of labeling a point oij with label ln during the paint-
ing phase is simply the marginal probability p(oij = ln∣B),
and the cost associated with that action is tied to the uncer-
tainty about its label when the sampling phase ends (e.g., if
p(oij = ln∣B) = 1, the true label is known with certainty and
there is no chance of committing an error during painting)1.
On each trial, the total expected cost EC(B) of ending the
sampling phase and entering the painting phase is de ned as:

EC(B) = Cerror ⋅∑
i

∑
j

∑
n

p(oij = ln∣B) ⋅[1−p(oij = ln∣B)]

(1)
For a new observation and its observed outcome (oij = ln)
we then calculate the resulting cost savings, or reduction in
expected costs:

S(B, oij = ln) = EC(B) −EC(B∣oij = ln) (2)

e savings achieved from feedback is offset by the cost of
making the observation (Cobs). To account for uncertainty
about the true outcomewe nd the expected savings byweight-
ing the savings for each outcome by its likelihood of occurring:

ES(B, oij) = −Cobs +∑
n

p(oij = ln∣B) S(B, oij = ln) (3)

For each trial,ES(B, oij) is calculated for all oij , giving a dis-
tribution of the expected saving for remaining observations in
the grid. An ideal learner maximizes this value by choosing
the location oij with the highest ES(oij) on each trial.

Disinterested (cost insensitive) Sampling A “disinterested”
sampling norm values observations according to their effect
on the learner’s beliefs without account for task-speci c costs
and bene ts. is captures the intuition that observations that
produce a large change in the agent’s beliefs tend to be more
useful than observations that have little or no effect (i.e., noth-
ing new is learned). In our approach this was modeled using
information gain, which values an observations according to
the expected reduction of uncertainty about the hidden game-
board. is uncertainty can be quanti ed by the Shannon en-
tropy measured over the current belief distribution (H(B)).

Entropy is maximized when all hypothesized gameboards
are equally likely (as with our initial uniform prior), and min-
imized when there is only one possible hypothesis. For a given

1For shorthand, B represents a vector of probabilities p(g∣oij =
ln), for all g ∈ G, that represents the full posterior distribution over
the entire space of gameboards. is is the agents current “belief dis-
tribution” about which gameboard is the current target.
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Figure 2: Cumulative frequency of ranks assigned to partici-
pants’ samples. A: In Experiment 1, the average rank of participants’
choices is higher than expected from a random sampling strategy, but
there is no difference between rankings assigned by the two models.
B: In Experiment 2, participants’ samples are more highly ranked ac-
cording to EIG than ES.

observation and its observed outcome (oij = ln) we can cal-
culate information gain as:

I(B, oij = ln) =H(B) −H(B∣oij = ln) (4)

To account for uncertainty about the true outcome of an
observation, information gain for each possible outcome is
weighted by the predicted probability of that outcome occur-
ring, giving the expected information gain for an observation
oij :

EIG(B, oij) =∑
n

p(oij = ln∣B) I(B, oij = ln) (5)

As above, on each trial we compute EIG(B, oij) for all loca-
tions in the grid, and assume that the optimal model chooses
the location with the highest value on each trial2.

In applying each model to human choice data, the model is
“yoked” to the decisions of the player. On each trial, the mod-
els assign a value (either EIG or ES) to each point in the
grid. ese utilities can be used to compute choice probabil-
ity of various grid locations. Aer revealing what the subject
actually chose on a given trial, the model updates its poste-
rior beliefs about the current gameboard con guration. ese
new beliefs then feed into new predictions about the utility of
choosing each grid location. e process ends when the par-
ticipant ends the game.

Experiment 1: Rectangle Search
e rst experiment re-analyses a previously published re-
sult which introduced explicit task-speci c costs (Gureckis &

2It is important to note that this represents a “greedy” policy that
chooses the best observation available on any given trial, but this
may not re ect the globally optimal solution. e current framework
could be extended to account for how participantsmight estimate the
value of sequences of observations. However, due to the computa-
tional complexity of nding this solution given the large number of
potential observations on any trial, for the present studies we focus
our analysis on the greedy model.



Markant, 2009). Six participants played a series of games in
which they searched for three rectangular shapes, randomly
drawn from the set shown in Figure 1. e set of shapes
was displayed on screen throughout the game. Participants
were instructed that the three shapes in each gameboard were
non-overlapping and were shown a large number of examples
gameboard con gurations prior to the experiment.

Each observation made by a participant during the sam-
pling phase was ranked according to the predictions of both
models (the median rank was used when multiple observa-
tions had equal value). Overall, the results show that people
consistently sampled points that were assigned a high value by
both models, with approximately 50% of their samples falling
within the top 10 ranked observations available to them (see
Figure 2A). In this experiment, however, the hypothesis set
that was used (rectangular shapes of varying shape and size)
led to highly similar predictions for both information gain and
expected savings, precluding a test of whether people were
sensitive to the costs in the task.

It is important to consider why the predictions of the two
models converged in this case. As discussed previously, a cost-
sensitive learner should value observations that have higher
utility—that is, those that will reduce the likelihood of com-
mitting errors in the painting phase by the greatest amount.
Intuitively, this implies that learning about bigger shapes is
especially useful, since it will allow one to correctly label a
greater number of squares. is idea is illustrated in Figure 3A
for a simple hypothesis set made up of three rectangles in dif-
ferent locations. While observing a “hit” on any shape de-
termines the true hypothesis (middle column), observing a
“miss” (righthand column) has different utilities depending
on the size of the shape it rules out. For example, ruling out
the smallest shape (top row) leaves uncertainty about how to
label eight other squares, whereas ruling out the largest shape
(bottom row) leaves uncertainty about only four.

While the shape set used in Experiment 1 contained a range
of sizes, the fact that the hypotheses were “nested” (i.e., the
largest shapes overlapped with a set of progressively smaller
ones) meant that learning about larger shapes also tended to
rule out many hypotheses. As a result, the predicted choice
values according to both models were highly similar. For our
second experiment we created an alternative hypothesis space
in which there were clearer differences in both the size of alter-
native hypotheses and the choices that were related to shapes
of different size, leading to a greater number of potential ob-
servations where the predictions of the two models diverged.

Experiment 2: Letter Search
In Experiment 2, we simpli ed the task to involve searching
for a single target in the grid. For the hypothesis space we cre-
ated a set of simple “letter” shapes (see Figure 3B). ere were
two types of games: L/D games, where the hidden letter could
be an L or D, and C/U games, where the hidden letter could
be a C or U. In each game a single point belonging to the hid-
den shapewas revealed before the participant began sampling.

ese modi cations resulted in a much less complex hypoth-
esis space (e.g., only  hypotheses were possible at the begin-
ning of an L/D game, and  for C/U games). Importantly,
because the two shapes involved in each type of game differed
in area (for example, the ‘D’ shape contained a greater number
of lled squares than the ‘L’), the predictions of information
gain and expected savings diverged in the task.

Methods
Participants Sixteen NYU undergraduates completed the study
for course credit or for a $ payment. e experiment was presented
on a standard Macintosh computer.

Materials A gameboard consisted of one of the four letter shapes
seen in Figure 3 placed in any location on the grid. All possible game-
boards were generated, resulting in  gameboards for each letter,
or  for each game combination (L/D or C/U). For L/D games,
 gameboards were randomly selected from the pool of L and D
gameboards. is was repeated for C/U games. e resulting total of
 unique games were used for all participants. e order of games
played was randomized for each person.

Procedure Many aspects of the design were identical to Experi-
ment 1 (described in Gureckis and Markant, 2009), so we highlight
differences below. In Experiment 2 we sought to reduce any reliance
on the visual display for recalling the speci c shapes being used. Par-
ticipants began the experimentwith two training phases tomemorize
the four shapes. In the rst, a letter cue (e.g., the character ‘L’ in a
standard computer font) was presented at the top of the screen along
with its corresponding shape, which appeared inside a x grid. e
participant was asked to copy the same shape onto an empty x grid
below. is was done twice for each letter (L, D, C, U) in randomized
order. In the second training phase, they were presented only with
the letter cue and an empty x grid, and asked to ll in the correct
letter shape from memory. is was repeated three times for each
letter in random order. In order to progress from one training trial
to the next, the participant was required to successfully reproduce
the correct shape. Training was followed by on-screen instructions
which were modi ed to re ect the new hypothesis spaces.

Before the sampling phase began, a -second cue was displayed
on the screen that indicated the type of game about to be played (the
characters “L D” or “C U”). is cue was also displayed on the right
side of the display during the game. is ensured that participants
were aware of the shapes that were possible but that they had to use
their memory of the actual shapes to guide their observations.

Sampling and painting phases proceeded in the same way as Ex-
periment 1. e nal score was then displayed, including how many
points were the result of sampling and how many were the result of
painting errors. e lowest score obtained by the participant in any
game so far was shown to provide motivation and a means to eval-
uate their performance over time. Each participant played 30 games
at their own pace, resulting in a total of 480 games collected.

Results
Sample rank On each sampling trial, the ideal models were
used to compute the expected information gain and expected
savings for all remaining observations available. A partici-
pant’s decisions were ranked according to EIG and ES (if mul-
tiple observations had the same value, the median rank was
used). e relative frequency of each sample rank was com-
puted for each participant across all trials, and averaged across
participants (see Figure 2B). e rank frequency shows that
participants’ choices were more highly ranked on average ac-
cording to EIG than ES. Participants’ samples were ranked
within the top 5 observations according to EIG on approx-
imately 57% of trials, whereas according to ES only 35% of
samples fell in the same range.
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Figure 3: A: Illustration of the divergence between information gain and expected savings. Le: A hypothesis space is comprised of three
possible rectangles, h1, h2, and h3. Middle: A hit on any one rectangle leads to the same number of hypotheses being ruled out, and no uncer-
tainty about the label of any square in the grid. Right: A miss in any of the three locations rules out a single hypothesis, but the predictive utility
of the sample differs based on its location. e labels for 8 squares are uncertain following amiss that rules out rectangle h1, 6 squares following
a miss ruling out h2, and 4 squares following a miss ruling out h3. B:Gameboard design and example model predictions in Experiment 2. Two
types of games were possible: L/D games, where the hidden shape could be an L or D, and C/U games, where the hidden shape could be a C
or U. Predicted value distributions for EIG and ES are shown for the rst sampling trial in each kind of game, with a darker value indicating a
higher value according to the model.

Model ts We next computed the likelihood of participants’
decisions under the two alternative models. For each trial, the
value of available observations was transformed into choice
probabilities using the somax function:

P (oij) =
eβ⋅V (oij)

∑x,y e
β⋅V (oxy)

(6)

e parameter β was t on an individual basis for each model
by maximizing the log-likelihood summed across all observa-
tionsmade by a participant. In all cases, EIG provided a better
t to participants’ data than ES (Table 1).

Stopping decisions Our nal analysis focused on partici-
pant’s decisions to stop sampling. While EIG and ES make
the same prediction as to when sampling should stop3, we
were interested in whether people showed any sensitivity to
the cost of collecting information. If people uncovered more
squares than necessary it would suggest a failure to account
for the cost of new observations (either in terms of ES or
EIG). We classi ed each game according to whether the per-
son decided to stop sampling before the trial predicted by the
model (“early”), on the same trail (“optimal”), or aer that
trial (“late”). On average, participants ended sampling early
(M = 0.46, SD = 0.14) or on the optimal trial (M = 0.50,
SD = 0.14) on a similar proportion of games. In contrast,
participants oversampled very rarely (M = 0.04, SD = 0.01).

3is convergence was due to the cost structure we used, in which
the penalty for stopping before the hidden target was known was
greater than the cost of an additional sample. Increasing the cost of
sampling relative to the cost of errors would lead to ES predicting
earlier stopping decisions than EIG.

Discussion
e results of our second experiment show that people per-
formed well compared to the ideal searcher model, frequently
choosing highly ranked observations and consistently per-
forming better than expected by a random search strategy. In
addition, participants rarely gathered more information than
necessary, which is consistent with prior work showing that
people are sensitive to costs incurred by oversampling (Fu &
Gray, 2006). Most importantly, we found that participants’
sampling choices were better described by information gain
than a cost-sensitive utility measure (expected savings).

Prior studies of human information collection have focused
to a large extent on “disinterested” accounts of sampling deci-
sions, showing that people are sensitive to the amount of infor-
mation conveyed by different sources of information (Nelson,
McKenzie, Cottrell, & Sejnowski, 2010). However, this line
of work has oen failed to consider whether people account
for variations in task-speci c utility when making sampling
decisions. In our task, we introduced penalties for informa-
tion access and uncertainty that altered the optimal sampling
strategy. By manipulating the set of hypotheses in Exp. 2, we
showed how sampling based on an information-maximizing
strategy can be distinguished from cost-sensitive sampling.
With respect to the distinction we began this paper with, our
results suggest that people (at least in this task) prefer to gather
information according to a “disinterested” measure of value.

Notably, differences in value between choices were not di-
rectly observable by the participant (as opposed to when some
observations are more costly or difficult to make than others).
Whether a given observation was valued differently according
to EIG and ES depended upon the set of hypotheses remain-
ing, and this divergence could change from trial to trial in re-
sponse to new data. As a result, establishing whichmodel pro-



vided a better account required tting them to participants’
decisions across a variety of choice contexts. is highlights
a feature of our approach in that we could evaluate different
sampling strategies using a set of highly variable choice se-
quences. rough the use of a well-de ned hypothesis set and
explicit cost structure, the “shape-search” task provides a use-
ful framework for studying how information search decisions
and task demands interact over the course of learning.

Of course, one potential caveat of the current study is that
(due to computational demands) we evaluated a greedy deci-
sion policy such that the predicted value of a new observation
does not take into account the consequence or utility of subse-
quent actions. It is possible that fully accounting for sequen-
tial dependencies in the search problem may alter the optimal
utilities computed by the model. However, one might reason-
ably question if the computational demands of such a multi-
step planning process are within reach of human reasoners.
In addition, it is unclear that accounting for multi-step plan-
ning strategies would alter the choice utilities in a way that
would bias for or against the results we report. Also note that
comparing Exp. 1 and 2 illustrates that expected saving is not
always at an advantage (i.e., in some choice environments the
models become less distinguishable).

Conclusion
So, why might human reasoners preferentially adopt “disin-
terested” sampling over “interested” sampling? One possibil-
ity is that sampling based on information gain (or other “dis-
interested” norms) may re ect a general purpose strategy that
is useful in a variety of contexts. In particular, information
gain can still be computed even when the cost of uncertainty
(i.e., not knowing which hypothesis is true at the end of sam-
pling) is difficult to predict. In addition, in many natural en-
vironments it may be consistent with the predictions of a cost-
sensitive utility function, as illustrated by our rst experiment.
At the very least, our results highlight the need to understand
the kinds of problems that lead people to adapt to task-speci c
costs in lieu of a general-purpose, “disinterested” approach to
information search.

Table 1: Model ts
Subj βEIG βES -LLH(EIG) -LLH(ES)
1 17.544 0.95 215.05 334.65
2 5.18 0.88 391.77 426.18
3 5.93 0.77 326.45 388.79
4 6.96 0.75 325.81 403.61
5 10.15 0.89 241.04 324.30
6 12.34 1.06 250.17 329.72
7 9.64 1.20 276.05 339.62
8 7.63 0.98 308.63 373.03
9 5.36 0.90 354.49 387.43
10 7.79 0.91 315.92 387.56
11 5.85 0.85 340.22 388.05
12 6.39 0.92 328.24 373.22
13 6.97 1.03 319.96 362.27
14 7.02 0.86 283.32 341.79
15 8.94 0.99 293.38 371.22
16 10.0 0.76 293.65 403.22
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