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People can test hypotheses through either selection or reception. In a selection task, the learner actively
chooses observations to test his or her beliefs, whereas in reception tasks data are passively encountered.
People routinely use both forms of testing in everyday life, but the critical psychological differences
between selection and reception learning remain poorly understood. One hypothesis is that selection
learning improves learning performance by enhancing generic cognitive processes related to motivation,
attention, and engagement. Alternatively, we suggest that differences between these 2 learning modes
derives from a hypothesis-dependent sampling bias that is introduced when a person collects data to test
his or her own individual hypothesis. Drawing on influential models of sequential hypothesis-testing
behavior, we show that such a bias (a) can lead to the collection of data that facilitates learning compared
with reception learning and (b) can be more effective than observing the selections of another person. We
then report a novel experiment based on a popular category learning paradigm that compares reception
and selection learning. We additionally compare selection learners to a set of “yoked” participants who
viewed the exact same sequence of observations under reception conditions. The results revealed
systematic differences in performance that depended on the learner’s role in collecting information and
the abstract structure of the problem.

Keywords: hypothesis testing, self-directed learning, category learning, Bayesian modeling, hypothesis-
dependent sampling bias

Hypothesis testing refers to the act of generating a set of alter-
native conceptions of the world, either explicitly or implicitly, and
using empirical observations to verify or refine that set (Poletiek,
2011; Thomas, Dougherty, Sprenger, & Harbison, 2008). The
ubiquity of this approach to inference is evidenced by its wide-
spread study in many areas of psychology, including theories of
category and concept learning (Bruner, Goodnow, & Austin, 1956;
Nosofsky & Palmeri, 1998), perception (Gregory, 1970, 1974),
social interaction (Snyder & Swann, 1978; Trope & Bassok, 1982;
Trope & Liberman, 1996), logical reasoning (Wason, 1966, 1968),
and word learning (Carey, 1978; Siskind, 1996; Xu & Tenenbaum,
2007b).

Bruner et al. (1956) presented a distinction between hypothesis
testing through selection versus reception. During selection, a
learner actively decides which observations to collect in order to
test a hypothesis (Klayman & Ha, 1987; Skov & Sherman, 1986;
Wason, 1960, 1966, 1968). For example, a doctor might decide to
order a particular blood test based on hypotheses about a patient’s

illness. In contrast, hypothesis testing by reception is a passive
mode of inference whereby the learner “must make sense of what
happens to come along, to find the significant groupings in the
flow of events to which he is exposed and over which he has only
partial control” (Bruner et al., 1956, p. 126). Experimental tasks
involving hypothesis testing usually fractionate along this distinc-
tion with fewer attempts to compare these two forms of learning
under otherwise similar conditions. For example, early work in
hypothesis testing focused mainly on selection tasks such as the
rule discovery (or “2-4-6”) task (Wason, 1960, 1966), whereas
research on category and concept learning has typically relied on
reception tasks in which examples are chosen by the experimenter
(e.g., Nosofsky & Palmeri, 1998; Shepard, Hovland, & Jenkins,
1961). This segregation is affirmed by the fact that none of the
leading models of category or concept learning have been designed
to account for selection-based learning, despite the relevance of
both modes of learning for concept acquisition (Hunt, 1965;
Laughlin, 1972, 1975; Schwartz, 1966).

Selection and reception learning are not simply artifacts of
laboratory research but capture a core distinction in the way that
people refine their beliefs about the world. Sometimes we strate-
gically design tests to evaluate our ideas, and other times we
simply stumble upon the relevant data as part of our ongoing
experience. Whereas Bruner et al. (1956) discussed this distinction
in the context of concept learning, similar issues have been dis-
cussed in many related disciplines including education, philoso-
phy, and machine learning. As one example, a long-debated idea in
education is whether “active learning” (Bruner, 1961; Bruner,
Jolly, & Sylva, 1976; Kolb, 1984; Montessori, 1912/1964; Papert,
1980; Piaget, 1930; Steffe & Gale, 1995) is more effective than
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more passive or guided forms of instruction (e.g., Klahr & Nigam,
2004). Understanding the differences between selection and recep-
tion learning may thus have a number of implications beyond
cognitive psychology.

Despite decades of research on hypothesis testing, little is
known about the psychological processes that distinguish learning
via selection or reception. We propose that learning by selection
introduces a hypothesis-dependent sampling bias wherein learners
select new observations that test the specific hypothesis they
currently have in mind. As a result, the pattern of data experienced
during learning becomes tied to the particular sequence of hypoth-
eses considered by the selection learner. This relatively simple idea
has a number of interesting implications that we examine in our
study. First, we show that selection learners are at an advantage in
certain learning problems because they can optimize their training
experience (e.g., by avoiding data they expect to be redundant
under their current hypothesis). Second, because selection deci-
sions depend on the learner’s current hypothesis, the exact same
sequence of training examples will be less useful to other learners.
We assess this in our study using a “yoked” design wherein
reception learners view the selections made by another learner.

The organization of the present article is as follows: We begin
by reviewing prior work in philosophy, machine learning, and
cognitive psychology that bear on the selection versus reception
distinction. Next, we introduce a theoretical framework for under-
standing this distinction psychologically. We then present a novel
empirical study in which learning via selection and reception is
compared under otherwise equivalent conditions. The study al-
lowed us to ask three key questions. First, which learning mode is
faster or more effective? Second, does the advantage for a partic-
ular learning mode depend on the complexity of the concept being
learned? Third, to what degree does any advantage for selection
learning depend on the differences in data experienced or on more
general factors related to learning (e.g., engagement or attention)?
Finally, we describe a computational model that extends existing
theories of concept learning in order to account for the effects of
both reception and selection learning. The model makes concrete
our theory of hypothesis-dependent sampling bias, and through a
set of simulations, we show that this bias can explain the pattern of
results in our empirical study.

The Informational Advantages of Learning by
Selection

On first consideration, it may appear obvious that selection has
the potential to accelerate the rate of learning compared with
learning by reception. Instead of being limited by the passive flow
of information, selection-based learners are free to gather data they
judge to be useful or informative. At a minimum, this allows them
to avoid redundant or irrelevant data and to focus on collecting
information that is expected to result in further learning. For
example, to learn which animals are included in the class
RODENT, it may be more efficient to ask about uncommon,
atypical animals (“porcupine”) as opposed to frequently encoun-
tered, typical ones (“mouse”) in order to find the boundary of the
category. Learning via selection can thus be more efficient because
it generates more informative data (assuming, of course, that the
learner can gather data in a nonrandom, useful way).

The “informational advantage” of selection-based learning is a
well-established principle of relevance to the design of machine
learning systems. For example, teaching a system to automatically
classify images or videos on the web often depends on training
data that has been labeled by a human operator, but this annotation
is costly and time-consuming. A more efficient system might be
designed that only requests human annotations for items that are
expected to be helpful for classifying other documents, as opposed
to wasting time on items that can already be classified with relative
confidence (Mackay, 1992; Settles, 2009). This basic idea under-
lies “active” machine learning techniques that have been shown to
speed learning in a variety of problems, including sequential
decision making (Schmidhuber, 1991), causal learning (Murphy,
2001; Tong & Koller, 2001), and categorization (Castro et al.,
2009; Cohn, Atlas, & Ladner, 1992; Dasgupta, Kalai, & Mon-
teleoni, 2005).

A similar principle is at play in scientific inquiry, a paradigmatic
example of selection-based hypothesis testing. Scientists seek to
verify theories about the way the world works by actively testing
these theories in empirical studies. Work in the philosophy of
science has considered which experiments a scientist should per-
form given a set of hypotheses. The two approaches that have
attracted the most attention are seeking confirmation (performing
tests or experiments that are expected to be consistent with the
current hypothesis) or falsification (choosing tests which could
potentially disconfirm the theory). Popper (1935/1959) influen-
tially argued that falsification is the best way to accelerate the
accumulation of knowledge. In other words, when done with the
aim of falsifying a hypothesis, selection should lead to faster
learning. This idea has a long history in the philosophy of science
wherein “crucial experiments” (Bacon, 1620/1902) that decide
between alternative theories should allow more effective discov-
ery. A similar idea is contained within Platt’s (1964) description of
“strong inference,”which suggests that fields in which theories are
systematically falsified are associated with more rapid progress.

Hypothesis testing research in cognitive psychology draws
heavily from these ideas (see Poletiek, 2011, for a review). One of
the major questions in the field has been whether people (partic-
ularly nonscientists) “intuitively” seek confirmation or falsifica-
tion in everyday tasks, with widespread consensus that people are
fairly biased toward confirmation of an existing hypothesis over
falsification (Nickerson, 1998; Wason, 1960). However, in some
environments, selecting confirmatory evidence (via the so-called
positive test strategy; Klayman & Ha, 1987) has been shown to be
an effective strategy for hypothesis testing (Austerweil & Griffiths,
2008; Navarro & Perfors, 2011). Moreover, people are sensitive to
the relative usefulness of different observations when given a set
of alternative hypotheses to evaluate (Nelson, McKenzie, Cottrell,
& Sejnowski, 2010; Skov & Sherman, 1986), suggesting that
people can select data in an efficient manner in some contexts.

One domain in which selection has been empirically shown to
improve learning relative to reception is causal learning (Lagnado
& Sloman, 2004, 2006; Sobel & Kushnir, 2006; Steyvers, Tenen-
baum, Wagenmakers, & Blum, 2003). In this context, selecting
data involves “intervening” on a variable by fixing its value and
evaluating the effect of that intervention on other variables (Pearl,
2000). The distinction between these modes is critical because
certain causal networks are indistinguishable through observation
alone, and can only be learned through active intervention.
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Steyvers et al. (2003) tested whether people could acquire a causal
relationship between three variables on the basis of either inter-
vention or passive observation. Their results showed that people
made interventions that were likely to be informative about the set
of possible causal structures, and were more successful at learning
the correct structure than people who learned by observation alone.
However, this advantage may also derive from other processes
involved in intervention-based learning, including the generation
of temporal cues linking interventions with its effects on other
variables (Lagnado & Sloman, 2004, 2006). It is unclear whether
the processes that contribute to these performance differences also
play a role in problems that do not involve learning about causal
relations.

Despite the theoretical rationale and empirical support for an
informational advantage for selection-based learning, it may not
always be the best strategy for learners to adopt (Enkvist, Newell,
Juslin, & Olsson, 2006; Schwartz, 1966). In particular, it may be
less effective than reception when learning more difficult or com-
plex concepts. For example, Schwartz (1966) found that although
selection was most efficient for learning simple rules (i.e., a
concept based on a single binary feature), disjunctive rules were
learned faster through reception of randomly chosen examples. As
yet, however, there have been few systematic investigations into
how the benefits of selection might depend on the structure or
complexity of the target concept.

Measuring the Impact of Selection Decisions Through
“Yoked” Experiments

Aside from the potential advantages of selecting better data, a
separate line of research has questioned whether there are general
cognitive benefits from learning by selection. One way to test this
is through experiments in which a “yoked” reception participant
learns from the same data that is gathered by a selection learner.
By holding the sequence and content of training data constant
across the pair of individuals, this design aims to isolate the effect
of making selection decisions on learning (Gureckis & Markant,
2012). One might expect that the yoked participant would have an
advantage because they are spared the additional demand of se-
lecting data, and in fact this was the conclusion of one of the
earliest examples of this design (Huttenlocher, 1962). However,
other studies of this kind have found that selection learners are
more successful than their yoked counterparts, despite the fact that
each pair experiences an identical set of data (Hunt, 1965; Lagnado
& Sloman, 2004; Schwartz, 1966; Sobel & Kushnir, 2006;
Steyvers et al., 2003).

What can account for the advantage for selection-based learning
when the training experience is held constant? One common
explanation is that selection and reception are distinct cognitive
“modes” that differ with respect to processes such as attention,
memory, or motivation. For example, selection learners may have
improved memory for individual training items (Voss, Gonsalves,
Federmeier, Tranel, & Cohen, 2011) or may attend to a different
subset of stimulus features from a yoked learner (Smalley, 1974).
Alternatively, making choices during learning may entail deeper
processing of the task (Kuhn & Ho, 1980; Sobel & Kushnir, 2006)
or may simply be inherently rewarding or engaging. In short,
learning by selection may lead to an enhancement of some cogni-

tive process or the recruitment of additional processes that facili-
tate learning (Chi, 2009; Elio & Lin, 1994).

Alternatively, selection learners may benefit from their ability to
collect information that specifically tests their individual hypoth-
esis (Hunt, 1965). The resulting hypothesis-dependent sampling
bias may lead to a training experience that is uniquely optimized
to refine their existing knowledge, whereas the same experience
may be poorly matched to the mental state of a yoked partner (we
use the term bias in the sense that the selection of data depends on
the learner’s current beliefs, rather than to imply that those deci-
sions are made in error). Differences between a pair of learners
may emerge simply because each individual is likely to have
different hypotheses in mind at any point in time, but the sequence
of data is more closely linked to the hypotheses of the selection
learner.

For example, imagine a social learning situation in which two
children are learning to skip stones across the surface of a lake.
Each child may have different initial ideas about what makes a
“good” skipping stone: One child may believe that the flatness
of the stone predicts whether it will skip, whereas the other
believes that the weight of the stone is the feature that matters.
If only one child picks new instances to test, however, the
sequence of observations may be most informative about their
specific hypothesis (e.g., the first child might try stones that
vary in flatness but are all about the same weight). The “yoked”
child who watches the other’s selections may still learn from
those observations, but he or she is likely to learn more slowly
than if he or she had been able to test his or her own hypothesis
in the first place (we provide a quantitative demonstration of
this idea in the next section). Importantly, this divergence can
arise without assuming any differences in terms of the learning
process or overall motivation. In addition, the magnitude of the
divergence will depend on how biased the selection learner’s
observations are. If a selection learner chooses new data com-
pletely at random, then that data are as likely to be useful to him
or her as it is to a yoked observer. As the learner makes
selections that are more closely tailored to his or her current
hypothesis, however, his or her advantage over the yoked
partner will increase.

Accounting for the benefits of learning by selection, particularly
when the actual content of the training experience is matched,
requires considering both of these explanations. Whereas previous
work has largely focused on a general “engagement” hypothesis—
that selection and reception are distinct cognitive modes of hy-
pothesis testing—in the present article we show that a simpler,
more computationally grounded theory based on a hypothesis-
dependent sampling bias may also contribute to differences be-
tween these two learning modes. In the next section, we provide a
concrete illustration of this principle before turning to an experi-
mental test of this idea.

Implications of a Hypothesis-Dependent Sampling Bias
for Learning

The central idea behind a hypothesis-dependent sampling bias—
that actively testing one’s own hypothesis can be different from
observing someone else test his or hers—is psychologically plau-
sible and intuitive (see Schober & Clark, 1989, for a similar idea
in the context of participating in vs. overhearing a conversation).
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However, rather than rely on intuition, a goal of the present article
was to articulate a theory of the difference between reception and
selection learning in terms of computational principles. In this
section, we describe how a hypothesis-dependent sampling bias
can lead to an advantage for selection learning as compared with
passive reception of randomly generated training data, as well as
“yoked” reception of a sequence of data chosen by a different
selection learner. The details of this preliminary simulation help to
set up the core aims of our later experiment.

Returning to the example we introduced in the previous section,
imagine learning which stones will skip across the surface of a
lake. For simplicity, assume that stones on this particular beach are
identical except for their relative flatness (see Figure 1, top). In this
situation, a single hypothesis is an idea about which level of
flatness correctly divides the stones into two categories: those that
will skip and those that will sink (see Figure 1, middle). In addition
to the two illustrated, a wide variety of hypotheses are possible,
each corresponding to a different threshold along the dimension of
flatness. The goal of learning is to determine which criterion along
the flatness dimension corresponds to the true state of the world. In
a selection task, the learner also has to decide which item to learn
about next. The blue line in Figure 1 (bottom) indicates a range of
possible selections the learner might make on the next learning
trial.

Although simplified, this scenario incorporates all of the rele-
vant features of more general hypothesis-testing situations: There
is a range of plausible hypotheses, each hypothesis makes different
predictions about observable events in the world, and empirical
observations are available that could help determine which hypoth-
esis is correct (Poletiek, 2011). We now consider the implications
of learning through selection or reception given this basic process.
The learner could (a) pick completely at random (e.g., picking up
a stone without looking at its flatness first), (b) pick new examples
through self-directed selection, or (c) receive examples through
“yoked” observation of another learner’s selections.

Hypothesis Testing via Bayesian Learning

It is instructive to consider the implications of each of these
three data-gathering processes for a “weak” Bayesian learner that
represents and updates the full set of alternative hypotheses while
learning.1 According to Bayes’ rule, the posterior belief about each
hypothesis h can be written as:

p!h!D" " p!D!h"p!h", (1)

where p(h) is the prior belief in each hypothesis, p(D|h) is the
likelihood of the observed data D given the hypothesis h, and
p(h|D) is the subjective belief about hypothesis h after observing
the data. The magnitude of the value p(h|D) for each hypothesis
reflects the relative strength of belief that this hypothesis is correct.
Assuming deterministic hypotheses, weak sampling implies that
observations consistent with a hypothesis have equal likelihood
(e.g., p(D|h) ! 1), whereas for any inconsistent observation,
p(D|h) ! 0. Following each observation of the skipping ability of
a stone, any hypotheses that are inconsistent with that observation
are falsified and will have p(h|D) ! 0. Figure 2 illustrates this
process for a subset of possible hypotheses, showing that on each
trial, hypotheses are removed that are inconsistent with the data

experienced so far (note that the full hypothesis space would
include many hypotheses not shown, including those in which flat
stones are predicted to sink rather than skip, but the basic process
is the same).

Given this model of learning, a selection learner should choose
new observations that take into account the plausibility of alter-
native hypotheses. It is uninformative to test an item that all
remaining hypotheses agree will either skip or sink. Instead, the
learner should focus on items that will further refine the set of
hypotheses, which in this case entails testing an item that falls
somewhere between the closest positive and negative examples.
This is shown in Figure 2 where the set of potential observations
on each trial (shown by the blue line) is limited to those that will
be able to discriminate between remaining hypotheses. Notice that
as new observations are encountered, certain hypotheses are fal-
sified while others remain viable.

As in the examples cited earlier, this kind of selection process
leads to more efficient learning than random generation of data, for
the simple reason that the “pool” of possible observations is
limited to those that will be informative (e.g., if there are only two
possible hypotheses left, the only informative data lies in the
interval between them, and it would be inefficient to select any-
thing else). Importantly, an identical outcome would be found for
a second learner who is yoked to the data generated by a selection
learner, because both begin with the full set of hypotheses, and the
same subset would be disconfirmed with each new piece of data.
Thus, according to a weak Bayesian model, learning by selection
and yoked reception are equally superior to reception of randomly
sampled instances. If all learners are assumed to represent the full
range of plausible hypotheses, they also stand to benefit equally
from the data that are selected.

Sequential Hypothesis Testing and the Hypothesis-
Dependent Sampling Bias

We can contrast the qualitative predictions of this Bayesian
model against an alternative model that is more limited in its
capacity to consider alternative hypotheses at each point in time.
Specifically, we consider a model based on sequential hypothesis
testing that is representative of a large body of work on rule
learning (Gregg & Simon, 1967; Millward & Spoehr, 1973; Nosof-
sky & Palmeri, 1998; Trabasso & Bower, 1968). The model makes
two key assumptions that differ from the Bayesian model.

First, rather than consider all possible category boundaries be-
tween “skip” and “sink,” it assumes that the learner considers only
a single hypothesis on each trial. Following each observation, the
learner evaluates whether the current hypothesis has been discon-
firmed and, if so, generates a new one that is consistent with the
new data. If the observation is consistent with the currently enter-
tained hypothesis, then that hypothesis will be maintained for the
next trial. This type of “win-stay, lose-shift” process is common to
many existing theories of rule learning and hypothesis testing

1 Following Tenenbaum (1999), we refer to this model of learning as
weak because it is a straightforward application of Bayes’s rule and does
not incorporate assumptions about how the data were sampled (Mitchell,
1997; Shafto et al., 2012; Tenenbaum, 1999; Tenenbaum & Griffiths,
2001) The purpose of this example is explanatory and we later explore
alternative Bayesian approaches in more detail.
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(Gregg & Simon, 1967; Nosofsky & Palmeri, 1998; Trabasso &
Bower, 1968). For example, RULEX considers a single rule at a
time (starting with simpler rules) and generates more complex
alternatives as it encounters data that are inconsistent with the rule
currently held in memory (Nosofsky & Palmeri, 1998).

The second assumption pertains to how data are gathered during
selection learning. We assume that there is a hypothesis-dependent
sampling bias such that the data selected during self-directed
learning are determined or constrained by the hypothesis the
learner is currently considering. In particular, we assume that
learners prefer to select items that are expected to lead to addi-
tional learning. Such items will generally occur near the learner’s
current estimate of the category boundary because this is where
there may be greater uncertainty about how to classify items and
where the learner is most likely to make mistakes.2 In contrast,
items that are far from the boundary are likely to be classified
quickly and with high confidence (e.g., Ashby, Boynton, & Lee,
1994). The bias to select items at the category boundary can
presumably vary in strength between individuals. For example, a
strong hypothesis-dependent sampling bias would lead to obser-
vations that are tightly clustered around the learner’s current
estimate of the category boundary, whereas a weak bias would
result in a wider distribution of observations (see Figure 3, top).

These two assumptions together lead to a divergence between
selection and yoked learners’ speed of acquisition. Figure 4 shows
the result of simulating this model under the three data selection
strategies described earlier (selection, yoked reception, and ran-
dom reception; refer to the Appendix for full details). In the
selection simulation, the model chose new observations according
to the principle just described. In the random reception simulation,
the model was presented new examples sampled from a uniform
distribution over the entire range of “flatness” values. In the yoked
reception condition, the model was presented with the same ob-
servations made by the selection model (the only other difference
between the two conditions being their initial hypotheses). In the

left panel, there is a faster drop in error for the selection model
compared with the reception model learning via randomly selected
examples. In addition, there is a gap in learning performance
between the selection learners and the yoked learners even though
both groups view the same exact sequence of data.

This gap between conditions arises without assuming any other
differences between learners aside from their initial hypotheses and
their ability to select data to test their own hypothesis. This result
qualitatively differs from the Bayesian model described in the previ-
ous section, which predicts no difference between selection and yoked
learners.3 However, note that the extent of the advantage for selection
is dependent on the strength of the hypothesis-dependent sampling
bias. When the selection learner’s choices are only weakly influenced
by their current hypothesis, there is no difference between their
performance and that of their yoked partner (see Figure 4, right panel).

This divergence in performance between selection learners and
their yoked partners occurs because the sequence of data generated
is more useful for the selection learner than the yoked reception
learner. Figure 3 illustrates this asymmetry when the selection
learner begins a task with a hypothesis that is too low (left column)

2 Increased uncertainty at the boundary of the category could arise from
a number of sources, including perceptual noise that makes classification
decisions more difficult close to the boundary. Alternatively, the learner
may have a more graded representation of the two categories (e.g., they
may use dissimilarity from a category prototype to predict category mem-
bership). Increased uncertainty at the boundary between two categories is
a common prediction of almost all categorization models, including exem-
plar, prototype, and decision-bound models.

3 Note that the two models as described so far differ in the number of
past observations that are stored (with a “full memory” in the Bayesian
model and just a single item stored in the hypothesis-testing model).
However, a difference between selection and yoked reception would not be
predicted by the Bayesian model even with a limited memory, because the
posterior distribution is updated in the same way for both kinds of learners,
based on the same (albeit limited) set of data.

Figure 1. Which stones will skip and which will sink? In this example, the learner’s goal is to infer how the property
of flatness is related to a stone skipping. Individual stones can be thrown and will either skip (green check mark) or
sink (red cross). The top part of the figure shows three example stones that were thrown across the lake, and the two
rounder examples sank while the flatter example skipped. The middle part of the figure shows two possible hypotheses
consistent with the data. Each hypothesis divides the dimension of “flatness” into stones that should skip (green) and
those that should sink (red). In a selection environment, the learner also has to decide which stone to test next. The
range of examples under consideration is illustrated by the blue line in the bottom panel. Notice that, in this example,
the blue line extends between the two closest positive and negative examples.
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while their yoked partner begins the task with a hypothesis that is
too high (right column). When the selection learner observes an
unexpected outcome to the right of their hypothesized category
boundary (i.e., a relatively round stone that skips), their hypothesis
is disconfirmed, and they will generate a new one (with a good
chance of generating a hypothesis closer to the true boundary). In
contrast, the same observation is consistent with the yoked learn-
er’s initial hypothesis and will not lead to any adjustment. The

consequence of this process is that, in general, the probability of
falsifying the current hypothesis is greater for the selection learner,
and they will have a faster rate of learning over a number of trials
(as verified in Figure 4; see also the Appendix for a further
demonstration).

Overview of the Present Study

The preceding analysis provides a mechanistic explanation for
differences between selection and reception learning. We showed
how specific performance differences may arise due to the interaction
of a hypothesis-dependent sampling bias along with plausible as-
sumptions about learning shared by many models of hypothesis
testing and rule learning. By explicitly linking the state of the learner
to the pattern of data experienced, this process can account for the
benefits of selection learning as compared with randomly generated
data, while also explaining why that advantage may not transfer to a
yoked participant who views the same sequence of observations.

The goal of the present study was to empirically evaluate
aspects of this theory by comparing learning via reception and
selection in a single task. Our experiment design was based on
a popular perceptual category learning paradigm (Ashby,
Alfonso-Reese, Turken, & Waldron, 1998; Ashby, Maddox, &
Bohil, 2002). Category learning is an ideal target for investi-
gation because it is a well-studied task with broad implications
for theories of concept acquisition. In addition, although there
is general agreement in the field that many forms of category
learning involve an element of hypothesis testing (Ashby et al.,
1998; Erickson & Kruschke, 1998; Nosofsky & Palmeri, 1998;
Trabasso & Bower, 1968), it has primarily been studied using
reception-based training, making the comparison in our exper-
iment relatively novel. Note, however, that the general princi-
ples at play (the distinction between selection and reception
learning) likely transcend the particulars of the experimental
task we selected and apply to other paradigms that involve an
element of hypothesis testing such as intervention-based causal
learning.

As in our simulation, we compared learning performance in (a)
a standard reception learning condition, (b) a selection condition in
which learners actively choose category exemplars to learn about
on each trial, and (c) a yoked reception condition in which learners
see the same exemplars chosen by a person in the selection
condition. In addition to this key contrast, we were also interested
in how the differences between these conditions might interact
with the complexity of the rule the learner is attempting to dis-
cover.

Our experimental results are followed by a more detailed model-
based analysis based on the framework just presented. Most im-
portantly, we show how the basic principles of the hypothesis-
dependent sampling bias can explain differences in performance
between selection, reception, and yoked reception conditions with-
out assuming that they involve distinct cognitive “modes” or
differing sets of parameters as has frequently been suggested in
prior work. This contribution is important because many existing
theories of category learning (including the weak Bayesian model
described above) predict that “learning-by-doing” (i.e., selection)
and “learning-by-observing” (i.e., reception) should result in iden-
tical patterns of behavior.

Figure 2. A Bayesian learner represents the full space of possible hy-
potheses (here, a discrete tiling of the space is shown for illustrative
purposes as a “stack”). Each hypothesis divides the observation space into
two regions (green for stones that skip and red for stones that sink). On
each trial, a new observation is selected if it will reduce uncertainty about
remaining hypotheses (shown by the blue interval labeled possible selec-
tions). This is because there is more disagreement between the remaining
hypotheses in this region of the observation space. Under this model of
learning, selection will be advantageous compared with reception of ran-
domly generated data because it avoids redundant data, but no difference
is expected in a yoked reception group without introducing additional
assumptions about the differences between these two groups.
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Experiment

A relatively simple and well-studied perceptual category learn-
ing task involving multidimensional, continuous-valued stimuli
(Ashby et al., 1998, 2002) was used in the experiment. In the task,
participants learned to classify perceptual stimuli into one of two
groups. Two types of abstract category structures were used: (a) a
rule-based (RB) structure, in which the optimal classification rule
is a criterion along a single dimension and (b) an information-
integration (II) structure, in which the optimal classification rule is
a linear combination of the values along two dimensions (see
Figure 5A). We anticipated that participants’ overall ability would
vary between the RB and II learning tasks, as previous research has
suggested that these two category structures may be learned in
different ways (Ashby et al., 1998).

In addition to the two category structures, participants in the
experiment were further divided into four training conditions. In
the selection (S) condition, participants “designed” stimuli in order
to reveal their category membership. In the random-reception (R)

condition, participants observed training stimuli that were ran-
domly generated from two bivariate normal distributions (i.e., a
standard training procedure for these types of tasks).

In the final two training conditions, participants were “yoked” to
the sequence of observations made by participants in the selection
condition, but learned through passive observation. In the naïve
yoked reception (Y1) condition, participants were not given any
information about the source of their training data (i.e., they were
in the same informational state as the random-reception partici-
pants). In the aware yoked reception (Y2) condition, participants
were told that their data had been selected by a previous participant
in the task with the same learning objective but who had learned
through selection. The purpose of this last condition was to eval-
uate whether knowledge about how the observations had been
selected would influence participants’ inferences (e.g., Shafto,
Goodman, & Frank, 2012).

We had two primary goals with this design. First, we were
interested in whether selection learners would acquire the target

Figure 3. Top: Unlike the weak Bayesian learner, in sequential hypothesis testing, the learner considers just
a single hypothesis about the boundary between stones that skip and stones that sink. During selection learning,
new observations are biased by the location of the learner’s current hypothesis (blue line), with the strength of
the bias determining how close new items are chosen to the hypothesized boundary. Bottom: Selection and yoked
learners begin with different initial hypotheses, but only the selection learner can test his or her hypothesis
(choosing an item from the blue interval). If an observation leads to falsification of the current hypothesis (e.g.,
a stone that falls to the right side of the boundary that also skips, as on the first trial for the selection learner),
a new hypothesis is randomly generated that is consistent with that observation (dashed arrows). The same
observations generated by the selection learner are observed by the yoked reception learner, who learns via the
same process. The observations generated are more likely to lead to falsification of the selection learner’s
hypothesis on each trial than the yoked reception learner.
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concept more quickly than through passive, reception-based learn-
ing for each kind of category structure. RB categories are thought
to be learned by reasoning about verbal or explicit hypotheses,
whereas II categories preclude a simple verbal description and are
thought to be learned via implicit or procedural learning. Crit-
ically, it is often argued that learners initially try out simple,
unidimensional rules and only abandon that strategy following
extensive trial-and-error training. One source of evidence for
this bias is typical behavior in the II task, in which early
responses are best fit by suboptimal, unidimensional decision
boundaries, and learning of the correct II boundary emerges
slowly over the course of training (Maddox & Ashby, 2004).
Given the relatively small amount of training data and the use
of observational training, our II task likely involves an early
stage of learning in which participants primarily rely on simple
rules (Ashby et al., 2002). We hypothesized that selection
learning may be most effective when participants are consider-
ing simple rules, and as a result would lead to an advantage in
the RB case because the category structure aligns with that
default strategy (Ashby, Queller, & Berretty, 1999; Kruschke,
1993). The comparison of selection learners with the random-
reception group allowed us to measure any advantage for se-
lection relative to the typical training experience in this kind of
task.

Second, the inclusion of the yoked reception groups allowed us
to separately evaluate the impact of selecting samples from the
informational content of those selections. Previous research sug-
gests that active or intervention-driven learning may lead to ad-
vantages over yoked learning (Lagnado and Sloman, 2004; Sobel
& Kushnir, 2006; Steyvers et al., 2003), but it is unclear whether
these results would generalize to both the RB and II category
structures tested here. In addition, a factor that has not been
examined in previous work is whether awareness of the yoking
procedure is sufficient to overcome this disadvantage, which we
test with our comparison between “naïve” and “aware” yoked

groups. This large factorial design allowed us to simultaneously
assess multiple influences on learning.

Method

Participants. Two hundred forty undergraduates at New York
University participated in the study. The experiment was run on
standard Macintosh computers in a single 40-min session. Each
participant was assigned to either the rule-based (RB) or
information-integration (II) task, and to one of four training con-
ditions: selection (S), random reception (R), naïve yoked reception
(Y1), or aware yoked reception (Y2).

Stimuli and materials. Stimuli were defined by a two-
dimensional continuous-valued feature space, where one dimen-
sion corresponded to the size (radius) of a circle and the second
dimension corresponded to the angle of a central diameter (see
example in Figure 5B). Stimuli of this type have been used in
many studies of perceptual classification (e.g., Garner & Felfoldy,
1970; Nosofsky, 1989; Shepard, 1964), and previous work has
established that these two dimensions are, for most participants,
separable and independent (Nosofsky, 1989). Stimuli could be
assigned a value on each dimension within the range [1,600].
These values were converted for display such that there was a
limited range of possible orientations and sizes. The orientation of
the stimulus could vary over 150°, ensuring that a full rotation of
the stimulus was not possible. The minimum radius and orientation
were randomized so that the optimal decision boundary corre-
sponded to a unique location in perceptual space for each partic-
ipant.

One hundred twenty-eight training stimuli were created for
the R training condition using samples from two bivariate
Gaussian distributions (see Figure 5A), with mean and covari-
ance parameters slightly modified from Ashby et al. (2002). For
classification trials, a uniform grid of 256 unique test items was
generated over the feature space for use in all conditions. For

Figure 4. The effect of training condition on error rate for the sequential hypothesis testing model. In the left
panel, selection learners achieve a lower error rate using fewer trials, evidence of faster learning. In addition,
there is a large difference in performance between the “yoked” and selection model. This is evidence of a
learning advantage from choosing your own observations to test. The right panel shows that this advantage
depends on the hypothesis-dependent sampling bias. If the selection learner chooses more randomly (as
compared to the simulation shown in the left panel), then the divergence between the conditions is expected to
be reduced or absent.
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each test block, eight stimuli were randomly chosen (without
replacement) from each quadrant of the stimulus space to avoid
random biases in the test distribution, for a total of 32 items in
each block. The order of individual test items within each block
and the order of the eight test blocks were both randomized for
each participant.

Procedure. Participants were told that the stimuli in the ex-
periment were “loop antennas” for televisions and that each an-
tenna received one of two channels (CH1 or CH2). They were
told that the channel received by any antenna depended in some
way on the two dimensions described above, and the participant’s
goal was to learn the difference between the two types of items.
Participants were instructed that the antennas were sometimes
“noisy” and could pick up the wrong channel “on occasion” and
that it would be beneficial to integrate over a number of trials
during learning (i.e., that they should learn what channel was
“most often” received by a particular type of antenna). In this
experiment, however, the feedback associated with each item

was deterministic. The experiment consisted of eight blocks, with
each block divided into a set of 16 training trials followed by 32
test trials.

Training phase: All conditions. The overall design of the
training phase roughly matched the “observational learning” pro-
cedure used by Ashby et al. (2002). In that study, participants
viewed a stimulus for a short, fixed duration followed by the
corresponding category label of the stimulus for a fixed duration
(the “no response/after” condition). Critically, participants were
not asked to make an explicit prediction, and corrective feedback
was never provided. The observational learning procedure is ideal
for studying self-directed learning because we wanted to limit the
conflicting demands of sampling informative items and sampling
items that would result in “correct” feedback under a supervised
procedure.

Training: S condition. On each training trial, the participant
“designed” a TV antenna and learned about its category mem-
bership. Each trial began with the presentation of a randomly
generated stimulus in the center of the screen. The participant
could then alter its size and orientation by moving the mouse
from left to right while holding down either the Z or X key (see
Figure 5B). The direction of motion and mapping of keys to
features were randomized across participants. Only one dimen-
sion could be changed at a time, but participants could make
any number of changes and use as much time as needed. When
the stimulus was the desired size and orientation, participants
pressed the mouse button to reveal the category label, which
appeared above the stimulus and was visible for 1,500 ms.
Querying the category label was not permitted until the partic-
ipant had made a change to the initial stimulus. Trial duration
was recorded starting with the initial presentation of the stim-
ulus until the end of the trial.

Training: R condition. In the R condition, participants were
unable to interact with the stimuli in any manner. Instead, in each
trial they were presented with a stimulus generated from the
category distributions described in Table 1. On each trial, a fixa-
tion cross was presented, followed by the stimulus (for 250 ms),
followed by the category label and stimulus together. Out of
concern that in this passive, observational condition participants
might not pay attention during the learning phase (relative to the S
participants who interacted with the display), the participant was
required to press a key corresponding to the displayed category in

Figure 5. A: Examples of the rule-based and information integration
category distributions. The space of stimuli is defined by two dimensions
(orientation and radius, see panel B for an example stimulus). Each point
in the space corresponds to a particular stimulus with a given value along
each dimension. The clouds of points illustrate an example distribution of
training stimuli shown to participants in the random reception condition,
with the optimal decision boundary shown by the solid line. Participants in
the other conditions received feedback consistent with this optimal bound-
ary even though their training distribution differed from the training
distribution plotted here. B: A depiction of a stimulus (left) and the
interface used in the self-directed learning condition.

Table 1
Category Distribution Parameters Used in the Experiment for
the Random-Reception Condition

Condition "x "y #x
2 #y

2 covxy

Rule based (RB)
1. Category A 220 300 2,000 9,000 0

Category B 380 300 2,000 9,000 0
2. Category A 300 220 9,000 2,000 0

Category B 300 380 9,000 2,000 0
Information integration (II)

1. Category A 250 350 4,538 4,538 4,463
Category B 350 250 4,538 4,538 4,463

2. Category A 250 250 4,538 4,538 #4,463
Category B 350 350 4,538 4,538 #4,463
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order to end the trial. The stimulus and label remained visible on
the screen until the verification response was registered.4

Training: Y1 condition. The purpose of the yoked conditions
was to mimic the reception training experience, but using a se-
quence of observations that were chosen by a participant in the S
condition. Each yoked participant was assigned to a participant in
the S condition who had already completed the study. Training
samples from the selection participant were used as the set of
training items for the yoked participant, and were presented in the
same order as they had been generated by the selection participant.
All other aspects of the procedure were identical to the R condi-
tion. In the Y1 condition, participants were given no information
about the source of the items they experienced during training.

Training: Y2 condition. In the Y2 condition, we manipulated
the instructions given to participants to describe the task. At the
start of the instructions, participants were told that they would be
randomly assigned to one of two roles for the experiment: either a
“Designer” or an “Apprentice” (a ploy to increase the belief that
there really were two possible roles in the experiment). They were
then all told that they had been assigned the role of Apprentice and
that they would learn about antennas that had previously been
selected by a Designer (the selection participant). Participants were
also given a small number of selection training trials so that they
were familiar with how the antennas were designed in the selection
condition. These practice trials were followed by the instruction:

You will learn about the exact same antennas that were created by the
Designer you’ve been partnered with, using the design process you
just practiced. You will see their designs in the exact same order as
they were tested by the Designer. Keep in mind that the Designer
wasn’t told that their designs would be used to teach an Apprentice,
but they were trying to learn the same thing as you.

All other aspects of the procedure were identical to the other
reception conditions.

Test: All conditions. Each set of 16 training trials was fol-
lowed by 32 test trials. On each test trial, a single item was
presented in the center of the display, and participants were asked
to classify the item according to the channel the item was most
likely to receive. No feedback was provided after their judgment.
Following their response, participants were then asked to rate how
confident they were about their response using a scale ranging
from 1 (“not at all” confident) to 5 (“extremely” confident).
Participants made classification and confidence responses at their
own pace. At the end of each block, participants were told their
cumulative accuracy during the block they just completed, as well
as their accuracy during the preceding test block.

Results

Information sampling during selection learning. The aggre-
gate distributions of selection participants’ queries (i.e., their locations
in stimulus space) in each of the eight training blocks are shown in
Figure 6A. Note that sampling close to the true category boundary is
often an adaptive selection strategy. After a little learning, items far
from the boundary are unlikely to be misclassified and should be
associated with more confident responses. In contrast, items near the
boundary between the two categories are often associated with greater
uncertainty. Thus, in the following analysis, we were interested in the

distance of selections from the category boundary as a general mea-
sure of uncertainty-driven information selection.

In both the RB and II tasks, participants began by widely
distributing samples over the stimulus space. Examination of in-
dividual participants’ data revealed that many began by testing the
boundaries of the space (i.e., the most extreme values on either
feature dimension). Over time, participants were increasingly
likely to sample more closely to the true category boundary, but
the extent of this shift differed between the RB and II tasks. To
quantify this change in sampling behavior, we measured the or-
thogonal distance of each sample to the true category boundary
and computed the average of this distance for each training block
(see Figure 6B). We performed a two-way analysis of variance
(ANOVA) of average sample distance with task (RB/II) as a
between-subjects factor and training block (1–8) as a within-
subjects factor. There were significant main effects of task, F(1,
440) ! 12.19, p $ .001, and block, F(7, 440) ! 4.4, p $ .001. As
seen in Figure 6B, sample distance was lower in the RB task than
the II task, and decreased in both tasks over the course of training.

In addition to the main effects of task and block number, there
was a significant interaction, F(7, 440) ! 2.69, p ! .009. Although
average sample distance decreased over time in both tasks, partic-
ipants were clearly better able to sample along the true category
boundary in the RB task than in the II task. For example, in the RB
task, average sample distance was significantly smaller than ex-
pected from a random-sampling strategy (dotted lines in Figure
6B) by the third training block (one-tailed t test), t(28) ! #2.21,
p ! .017, and in all subsequent blocks. In the II task, sample
distance never dropped below the level expected from a random-
sampling strategy (one-tailed t tests, all ps % .05). However, in the
II task, there were individual participants who consistently selected
items along the category boundary. Figure 6A shows two individ-
ual participants from both the RB and II tasks.

Classification. Responses during test blocks were scored ac-
cording to whether the participant identified the correct category of
each test item (as determined by the true category boundary).
Three participants (one each in the RB/S, RB/Y2, and II/S condi-
tions) were excluded from further analysis because their overall
performance (averaged across blocks) was more than three stan-
dard deviations below the mean of their group. Overall accuracy
across tasks and conditions is shown in Figure 7A. We performed
a two-way ANOVA with task type (RB/II) and training condition
(S/R/Y1/Y2) as between-subjects factors. There was a significant
main effect of task, F(1, 229) ! 2.28, p $ .001, with performance
higher in the RB task overall, as well as a main effect of training

4 In this design, reception participants are not matched to selection participants
in terms of perceptual-motor demands (e.g., precisely adjusting the stimulus before
observing the category label). However, pilot data suggested that attempting to
equate this interaction (e.g., having reception learners adjust the stimulus to a
prespecified “target”) made learning much more difficult for the reception group,
potentially adding to any advantage for selection-based learning.

A further difference between selection and reception was the timing of their
response relative to the category feedback (selection learners clicked the
mouse to show the label, whereas reception learners pressed a button after the
label was shown to confirm its identity). Out of concern that this procedural
difference might contribute to our results, a smaller follow-up control exper-
iment was run in which the same response was required to reveal the category
label in both the selection and yoked conditions. However, the overall pattern
of performance was similar to those reported in the present study.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

10 MARKANT AND GURECKIS



Training Block

S
am

pl
e 

di
st

an
ce

 fr
om

 b
ou

nd
ar

y
(a

rb
itr

ar
y 

st
im

ul
us

 u
ni

ts
)

Training Block
2 4 6 8

50

100

150

200

250

1 3 5 7 2 4 6 8
50

100

150

200

250

1 3 5 7

* *
* * * *

A

B

Stimuli sampled by selection participants:

Sample distance from true category boundary

RB II Random
sampling

RB

II

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8

example
subjects

example
subjects

Figure 6. A: Distributions of samples chosen by selection participants in the rule-based (RB) and information-
integration (II) tasks. Each point specifies the size and angle of an antenna that a participant selected (stimulus
spaces have been rotated so that the decision boundaries align across participants). Shown below each composite
are the selections made by two participants whose selections were closest to the true boundary, on average
(relative to the rest of the participants in their group). B: Average distance of participants’ samples from the
optimal decision boundary by training block (black line). Dotted lines show the average distance expected from
a random-sampling strategy, and stars denote blocks in which sample distance was significantly smaller. In the
RB task, participants sampled significantly closer to the true category boundary than expected by a random
strategy by the third block. In the II task, sample distance decreases over time, but never drops below the level
expected from chance. The difference in chance responding between the two tasks results from the orientation
of the optimal decision boundary in the space. Average sampling distances that appear “worse” than random in
the early blocks is the result of a bias that some participants showed toward sampling at the extreme edges of
the space. Error bars show the standard error of the mean.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

11LEARNING VIA ACTIVE AND PASSIVE HYPOTHESIS TESTING



condition, F(3, 229) ! 6.5, p $ .001, with selection learners more
accurate than both yoked conditions: Y1, t(116) ! 2.56, p ! .01;
Y2, t(115) ! 2.71, p ! .008 (all other pairwise comparisons p %
.05). There was no interaction between task and training condition,
F(3, 229) ! 1.3, p ! .27.

In the RB task, overall accuracy was marginally higher in the S
condition than in the R condition, t(57) ! 1.82, p ! .07, and
significantly higher than both yoked conditions: Y1, t(57) ! 2.33,
p ! .02; Y2, t(56) ! 2.34, p ! .02. There was no difference
between accuracy in the R condition and either yoked condition:
Y1, t(58) $ 1; Y2, t(57) $ 1, and no difference between the two
yoked conditions, t(57) $ 1. As shown in Figure 7B, all four
training groups perform at the same level in the early part of the
task, but as the task progresses, an advantage emerges for the
selection learners over all three reception groups. By the third
block, RB selection learners reached the same level of perfor-
mance as achieved by the random-reception participants in Block
8 (see Figure 7B). Thus, it took the reception learners 2.7 times as
long to achieve the same level of performance.

Within the II task, there was no difference between the selection
and random-reception groups, t(57) $ 1, but performance was greater
in these two conditions when compared with either Y1: S, t(57) !
3.09, p ! .003; R, t(58) ! 2.72, p ! .008, or Y2: S, t(57) ! 3.35, p !
.001; R, t(58) ! 2.97, p ! .004. As in the RB task, there was no
difference between the two yoked training groups, t(58) $ 1.

Because yoked performance was lower than that of selection learn-
ers in both tasks, we were interested in whether individual yoked
participants benefited from being paired with high-performing selec-
tion participants. In both tasks, however, there was no correlation
between selection learners’ overall accuracy and the accuracy of
yoked learners linked to the same training data, regardless of whether
the yoked learners were naïve: RB, r ! #.03, p ! .39; II, r ! #.26,
p ! .15, or aware: RB, r ! #.1, p ! .34; II, r ! .18, p ! .24. This
runs counter to the prediction of the Bayesian model introduced in the
introduction, which holds that the composition of the training data
drives performance (and thus, accuracy should be correlated for pairs
of participants who view the same items).

We next tested whether there were differences in confidence ratings or
reaction times (RTs) during classification trials. Although there was a

main effect of task type (II learners were both less confident and slower
to respond), there were no significant effects of training condition. Due to
the lack of a difference between training conditions, confidence ratings
and classification RT were not analyzed further.

Training trial duration. Due to the need for selection partic-
ipants to interact with stimuli during learning, we expected there
may be differences in the duration of training trials between
conditions, which could potentially play a role in the differences in
performance described in the previous section. However, the pat-
tern of results cannot account for the accuracy differences ob-
served between conditions. A two-way ANOVA on median trial
duration with task type (RB/II) and training condition (S/R/Y1/Y2)
as between-subjects factors confirmed a significant main effect of
training condition, F(3, 229) ! 177.6, p $ .001, and a main effect
of task type with a shorter duration in the RB task overall (RB:
M ! 3.1 s, SD ! 2.1; II: M ! 3.6 s, SD ! 2.5), F(1, 229) ! 5.2,
p ! .02, but no interaction, F(3, 229) $ 1. Duration was not
significantly different in the S conditions between the two tasks
(RB: M ! 5.5 s, SD ! 1.4; II: M ! 5.9 s, SD ! 1.6), t(56) ! 1.0,
p ! .3, despite the poorer performance for II selection learners.
Similarly, although duration was shorter in the R conditions over-
all, it did not predict the changes in performance between task and
training condition (RB/R: M ! 1.3 s, SD ! 0.4; RB/Y: M ! 1.8
s, SD ! 0.7; RB/Y1: M ! 1.4 s, SD ! 0.6; II/R: M ! 1.6 s, SD !
0.7; II/Y: M ! 2.3 s, SD ! 1.9; II/Y1: M ! 1.6 s, SD ! 0.6).

Relating sampling behavior and learning. Our next goal was
to examine the relationship between sampling decisions and task
performance. Specifically, we tested whether a participant’s classifi-
cation accuracy was related to how closely his or her training samples
fell to the objective category boundary. For selection learners, we
found that mean sample distance from the true category boundary was
negatively correlated with overall test performance in both the RB
(r ! #.60, p $ .001) and II (r ! #.54, p ! .003) tasks (see Figure
8A), showing that participants who sampled closer to the category

5 Due to their equal test performance, naïve- and aware-yoked groups were
combined for this analysis. However, a similar relationship is found between
sample distance and accuracy when the groups are considered separately.

Figure 7. A: Overall classification accuracy for each condition averaged across all test blocks. B: Mean accuracy for each
condition as a function of test block (learners of the rule-based [RB] structure are depicted with solid lines; the information-
integration [II] structure is shown as dashed lines). Error bars show the standard error of the mean in both plots.
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boundary were more accurate overall. Interestingly, the same rela-
tionship was not found for yoked learners who were trained with the
same stimuli.5 In the RB task, there was a positive correlation between
sample distance and performance (r ! .29, p ! .04), whereas in the
II task, there was no correlation (r ! #.11, p ! .29). As is visible in
Figure 8A, yoked learners who received data that fell closer to the
category boundary were often among the worst performers in their
group (this is particularly clear in the RB task), whereas the same
training data were associated with higher performance in the selection
participants. This pattern is particularly challenging to explain be-
cause it suggests that training sequences that helped one learner
perform well actually impaired the performance of a separate yoked
learner. It is consistent, however, with the predictions of a hypothesis-
depending sampling bias, as illustrated in Figures 3 and 4.

Decision-bound analysis of test-block responses. In a final
analysis, we attempted to characterize changes in participants’
beliefs about the category boundary during learning. Our theory of
a hypothesis-dependent sampling bias has assumed that learners
preferentially select items that fall near the category boundary that
they are currently considering. To the degree that a participant’s
classification responses during test blocks reflect their current
understanding of the categories, we can use these responses to
estimate their current hypothesis. To this end, we fit linear decision
boundaries to each participant’s responses in each test block.
Measuring changes in the parameters of the best fit bounds from
block to block provides a coarse description of the frequency and
magnitude of shifts in beliefs over time. In addition, measuring the
distance of each selected training item from a participant’s own
best fit boundary (as opposed to the objectively true boundary)
may be more informative about how information-sampling behav-
ior relates to dynamic changes in the participant’s beliefs.

In each test block, a participant provided category labels for a
set of items that were uniformly distributed throughout the stim-
ulus space. We found the best fitting linear decision boundary for
each block of test responses from each participant. A decision
bound can be described by three parameters: &, the angle of the
decision bound in space; b, the bias, or offset from the center of the
space; and ', the determinism of the boundary. The likelihood that
a given observation x belongs to Category A is a sigmoidal
function defined by the parameters {&, b, '}:

P(xt $ A!%, b, #) $
1

1 & exp!'#(x1
t · cos(%) & x2

t · sin(%) ' b)"
,

(2)

where xi
t gives the observed value on dimension i on trial t. Because the

classification is binary, P(xt ! B|&, b, ') ! 1 # P(xt ! A|&, b, '). The
likelihood of a particular set of labeled observations D ! {x1, . . . , xn} is
given by P(D|&, b, ') ! (t P(xt|&, b, '). Given this likelihood function,
the best fitting parameters were found using a standard optimization
procedure that maximizes the log likelihood of each set of responses.
Qualitatively speaking, most participants’ test-block responses were well
characterized by a linear decision boundary of this form. We compared
the Akaike’s information criterion of the decision-bound model with that
of a random-response rule in order to find the number of test blocks that
were best fit by the decision-bound model. Figure 9A shows the propor-
tion of participants for whom a given number of blocks were best fit by
the decision-bound model compared with random responding. In general,
the decision-bound model provided a better fit, particularly for all RB
conditions, in which approximately 80% of participants had all blocks
better accounted for by the decision-bound model. In the II condition, an
increased number of blocks were best fit by the random model, but a

Figure 8. A: Relationship between the average distance of samples from the true category boundary and
participants’ overall accuracy. Samples closer to the true boundary were associated with higher accuracy in
selection but not yoked learners. In the random-reception (R) groups, the samples shown to all participants had
the same average distance from the boundary. B: When sample distance is measured relative to a learner’s best
fit boundary on the previous test block, it is correlated with overall accuracy for all groups in both tasks. RB !
rule based; II ! information integration.
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majority of participants still had seven to eight test blocks best fit by the
linear decision model.

Figure 9B shows the distribution of best fit values of & for those
blocks in which the decision-bound model provided a better fit
than random responding, with the black bars indicating the interval
that contains the true category boundaries for each task.6 In the RB
task, there was a clear preference for unidimensional rules, with
strongly diagonal rules providing the best fit in a small proportion
of blocks (S: 1%, R: 4%, Y: 4%). In the II task, there was a higher
proportion of diagonal rules (S: 21%, R: 23%, Y: 18%), but
unidimensional rules still accounted for a greater number of test
blocks overall (S: 33%, R: 31%, Y: 37%).

Sample distance from best fit subjective boundary. In our
earlier analysis (see Figure 8A), we found that sampling closer to
the true category boundary was associated with higher perfor-
mance in selection, but not yoked, learners. One explanation for
this divergence is that samples are more useful with respect to the
selection learner’s current beliefs (i.e., they are produced by a
hypothesis-dependent sampling bias). Accordingly, the distance of
samples from a learner’s current “subjective” decision boundary
may better predict how they learn from those observations. To
evaluate this idea empirically, for each participant we measured
the average distance of selections on each training block (exclud-
ing the first) to the best fit decision boundary for the previous test
block. Using this subjective measure, we again found that sample
distance was strongly correlated with overall performance for
selection learners in both tasks (see Figure 8B; RB: r ! #.69, p $
.0001, II: r ! #.74, p $ .0001). Unlike the previous analysis,
however, there was a trend toward the same relationship for yoked
participants in the RB task (r ! #.24, p ! .06) and a significant
correlation in the II task (r ! #.48, p ! .0001). In addition,
although objective sample distance was fixed across reception
participants, using subjective distance we found the same relation-
ship in both RB (r ! #.79, p $ .001) and II (r ! #.75, p $ .001)
tasks. We next tested whether subjective distance differed between
participants who observed the same training data depending on the
task and their condition (selection vs. yoked reception). A two-way
ANOVA on subjective distance with task and condition as
between-subjects factors revealed significant main effects of both
task, F(1, 173) ! 58.2, p $ .001, and condition, F(1, 173) ! 5.93,
p ! .015, but no interaction, F(1, 173) $ 1. Subjective distance
was smaller for selection learners than for yoked learners, as might
be expected because selection learners were making the sampling
decisions themselves. In addition, overall subjective distance was
smaller in the RB task than in the II task, further suggesting that
sampling was less effective in the II task.

Variability in decision rules during learning. Finally, we
measured changes in the best fit parameters from block to block in
order to better understand how participants’ beliefs shifted over
time. For example, given that & describes the importance attributed
to either feature dimension, changes in & signal exploration of
different forms of rules. Changes in b, however, suggest refine-
ment of the location of the boundary in space (although changes in
both parameters can occur simultaneously). Variability in the value
of ', unlike the other two parameters, does not reflect adjustments
to the location of the boundary in space, but rather changes in the
determinism of responses.

The magnitude of changes in best fit parameters was measured
between pairs of consecutive test blocks and averaged over early

(1 ¡ 2, 2 ¡ 3, 3 ¡ 4) and late (5 ¡ 6, 6 ¡ 7, 7 ¡ 8) transitions.
Because the distribution of these values violated the assumptions
of standard t tests, we used the nonparametric Wilcoxon rank sum
test to evaluate differences in variability between conditions. Fig-
ure 10 provides a compact summary of these analyses. First,
consider the variability of & (see Figure 10, left) and b (see Figure
10, middle). Overall, variability in both parameters was greater in
the II task than in the RB task (&: W ! 11861, p $ .001, b: W !
10478, p $ .001), suggesting that II learners were more likely to
make large changes to their classification decision strategy from
one block to the next.

In the first half of the RB task, there was no systematic differ-
ence in the variability of either & and b between conditions. In the
latter half of the task, however, variability in the same parameters
is significantly lower in the S condition than both reception train-
ing conditions for both & (R: W ! 296, p ! .04, Y: W ! 575, p !
.01) and b (R: W ! 222, p ! .001, Y: W ! 303, p ! .04), whereas
variability is not different between R and Y conditions. This
suggests that by the second half of the RB task, selection partic-
ipants had learned the correct form of the rule and made smaller
adjustments from block to block than participants in the reception
conditions. Variability of & and b in the II task followed a similar
pattern for the S and R conditions. The major difference in this task
was that random-reception learners show less variability in b in
early blocks than the other conditions (S: W ! 605, p ! .02, Y:
W ! 1170, p ! .02), and equal variability to the S condition in late
blocks for both & and b (consistent with their classification per-
formance being the same as the S condition).

Variability in ' (see Figure 10, right) indicates differences in
how deterministic responses were from block to block (e.g., tran-
sitioning from random classification on one block to the use of a
sharp, deterministic rule on the subsequent block). Overall vari-
ability in ' (transformed to log scale) was significantly higher in
the RB task than in II task (W ! 31,002, p ! .05). However, there
were no differences in the variability of ' between training con-
ditions in either early or late blocks.

The key point from this analysis is that poorer performance for
reception learners in the RB task and the yoked group in the II task
seemed to be related to an ongoing search for the correct form of
decision boundary. In particular, the pattern suggests that yoked
behavior was marked by larger, more frequent shifts in decision
bounds throughout the experiment (as may be expected from
ongoing hypothesis testing). Notably, the average change in & for
yoked learners in the latter half of the II task is approximately
equal to a shift from a unidimensional rule to a diagonal rule
(marked by the horizontal line in the plot for & in the first panel of
Figure 10). In contrast, changes in both & and b are smaller in late
blocks for selection learners, consistent with their higher overall
accuracy.

6 The & parameter determines the orientation of the decision boundary in
the stimulus space. A value of & ! 0 implies a vertically oriented decision
boundary (as illustrated along the x-axis in Figure 9B). This parameter can
be viewed as the relative weight given to either dimension in the task in
which the weight for dimension one is w1 ! cos(&), and the weight for
dimension two is w2 ! sin(&).
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Discussion

There are a number of key observations from the experiment.
First, we found a main effect of category structure, with partici-
pants in the II task performing more poorly overall. This result is
consistent with previous category learning studies that explored
the RB and II distinction under observational learning conditions

(Ashby et al., 2002). This overall pattern likely reflects biases in
how people approach such tasks (preferring simple “verbalizable”
rules over more complex decision boundaries). Because the num-
ber of training trials in our experiment was relatively low, it is
unlikely that incremental procedural learning processes contrib-
uted to performance (in fact, this is a prediction of the dual-system
COVIS framework; Ashby et al., 1999).
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Figure 9. A: Histogram showing the number of test blocks best fit by the decision-bound model compared with
a random-response rule. In all rule-based (RB) conditions, more than 80% of participants did not have a single
block that was better accounted for by random responding. In the information-integration (II) task, there were
a greater number of blocks that were best fit by random responding, but in all conditions more than 60% of
participants had one or fewer blocks of this kind. B: Relative frequency histogram of the best fit value of & for
all test blocks, divided by condition. The black bars indicate the bins containing the orientation of the true
category boundaries in each task, whereas the gray bars correspond to all other orientation bins. In the RB task
(top row), most decision bounds correspond to a unidimensional rule. In the II task (bottom row), unidimensional
rules still account for a large proportion of test blocks across conditions.
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Second, we found that selection learners were more accurate
than random-reception participants, but only in the RB task. Al-
though this result was surprising (one might have expected that
selection learning would provide a performance boost for any
task), it is consistent with previous work that has suggested that
selection learning is less effective for more complex problems
(Enkvist et al., 2006; Schwartz, 1966). Importantly, any theory that
argues that selection simply leads to greater “engagement” with
the task would have trouble explaining why there would be a
differential advantage based on problem type.

Third, we found a strong relationship between selection deci-
sions and performance in both RB and II tasks. Our theory of the
hypothesis-dependent sampling bias suggests that selection learn-
ers should differentially query regions in the stimulus space where
they were most likely to commit classification errors (i.e., near the
boundary). Consistent with this idea, selection learners in the RB
task showed a clear preference for items that were close to the true
category boundary (see Figure 6) and were close to the boundary
that they were considering on the previous test block.

This sampling strategy helps to explain why selection partici-
pants in the RB task outperformed participants in the R condition
who received samples from predefined distributions. Even though
the overall average distance of their samples from the boundary
was relatively low, random-reception participants were less likely
to observe training items close to the critical boundary than many
selection participants (e.g., consider the sampling strategies of the
two individual participants shown in Figure 6). Given the large
literature on confirmation bias, it is notable that RB selection
participants were able to sample effectively within the context of
a novel, abstract task, supporting previous findings of efficient
sampling in other problems (Castro et al., 2009; Gureckis &
Markant, 2009; Oaksford & Chater, 1994). In contrast, selection
participants in the II task were less likely to sample near the true
category boundary and had lower accuracy than the same condi-
tion in the RB task. As in the RB task, however, the tendency to
do so was related to the learner’s performance, and there were a
few highly effective II samplers who also achieved higher accu-
racy relative to the rest of their group (see the bottom two exam-
ples in Figure 6).

However, any advantage for selection learners cannot be ex-
plained by a difference in training data alone. Most striking is the
finding that yoked participants in both tasks were less accurate
than the selection group despite learning from the exact same
observations. Indeed, the yoked participants who observed what
might be considered the most objectively useful training data (as
measured by distance from the true category boundary) were
among the worst performers, particularly in the RB task. If selec-
tion and yoked learners are assumed to update their beliefs through
a common process (as would be predicted by most existing models
of human categorization, including the Bayesian model described
earlier), then this strong pattern of divergence is unexpected.

The key to understanding this pattern was our analysis of how
new observations were related to estimates of participants’ deci-
sion boundaries. In all tasks, performance was negatively related to
the distance of the observed samples to the individual’s decision
boundary on the previous block. This suggests that learners are
better able to learn from samples that fall in regions they currently
consider uncertain. Because yoked and selection participants will
be considering different hypotheses at any point in time (particu-

larly early in the task), this can lead to performance divergences.
This overall data pattern is a core prediction of our theory of the
hypothesis-dependent sampling bias.

The results of the decision-bound analysis also provide insight
into the basis for participants’ errors during learning. For example,
it is not the case that yoked learners failed to classify items
systematically or to change their beliefs following poor perfor-
mance in a test block. Instead, their response variability suggests
that, on the whole, yoked participants continued to search for the
correct decision bound but were less likely to acquire (and main-
tain) it than selection learners. This is consistent with the idea that
participants were engaged in sequential hypothesis testing (Gregg
& Simon, 1967; Nosofsky & Palmeri, 1998; Nosofsky, Palmeri, &
McKinley, 1994; Trabasso & Bower, 1964). Even in the second
half of the task, we found that some participants changed which
dimension they used to classify exemplars, which is unexpected if
participants were integrating over all previous training examples.

One possible explanation for this response variability is that
participants only use a small number of recent observations to
evaluate their belief about the category rule (consistent with the
classic studies of hypothesis testing by Trabasso & Bower, 1964).
This is also intuitively likely given that the category exemplars are
highly similar to one another and easily confusable. A limited
memory for past observations may heighten the importance of
effective sampling, such that the most recent examples are used to
judge the validity of the learner’s existing belief about the category
boundary.

Overall, the experimental results provide strong evidence for
interactions between the mode of information sampling and the
structure of the concept being learned. Moreover, they suggest that
the difference between selection and yoked reception was not
based simply on the act of selecting data, but rather the kind of data
that is collected and whether it is useful to the learner. The
advantage for selection learners depended on their ability to collect
information close to their estimate of the category boundary,
whereas the same information was less beneficial when observed
by other participants. This finding is inconsistent with the idea that
selection improves performance through increased “engagement”
or another generalized change in the learning process. In general,
it supports the idea that selection learning introduces a hypothesis-
dependent sampling bias such that new observations are linked to
the sequence of hypotheses entertained by the person who made
them.

In the next section, we present a model based on the principles
described earlier in the present article, allowing us to systemati-
cally investigate how information collection interacts with learning
in our task. Our goal was to introduce a computationally explicit
model that can account for our experimental results while also
demonstrating how hypothesis-dependent sampling biases affect
learning outcomes more generally.

Modeling Interactions Between Sequential Hypothesis
Generation and Information Selection

At the broadest level, our theory asserts that people engage in
sequential hypothesis testing (consistent with the ongoing shifts in
response rules seen in the experiment) and that the selection of
new observations is biased by the learner’s current hypothesis (the
hypothesis-dependent sampling bias). Given these assumptions,
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we show that selection and reception can lead to different learning
outcomes without assuming any other differences between condi-
tions.

Our simulations address two theoretical questions posed by the
behavioral results. First, given the focus placed on reception learn-
ing in the literature, existing category learning models provide no
explicit account of how different training conditions would pro-
duce our experimental results. In Simulation 1, we show that our
model can recreate the pattern of results when the learning process
is the same between conditions, and all that differs is the task and
mode of information sampling.

Second, existing models have difficulty explaining the diver-
gence between selection and yoked reception learners (because the
sequence of training examples is identical in both conditions).
Simply assuming selection learning is advantageous because of
increased “engagement” or another generalized cognitive factor
fails to account for the interaction between sampling behavior and
performance that was observed in the experiment (i.e., under an
engagement hypothesis, Figure 8A would show a main effect
rather than an interaction). Our second simulation tests our hy-
pothesis that this relationship, and the divergence between selec-
tion and yoked reception groups in general, is a direct consequence
of a hypothesis-dependent selection process, and explores the
conditions under which this kind of divergence is expected to
emerge.

Description of the Model

There are five key principles governing the model. First, we
assume that linear decision bounds are used to make decisions

about category membership (consistent with evidence that
learners have a preference for such rules early in a learning
task). Second, the learner generates, and potentially switches to,
a new hypothesis on each trial based on a stochastic process
(consistent with models of sequential hypothesis testing). Third,
we assume that the generation of new hypotheses is strongly
biased by a prior preference for unidimensional rules. Fourth,
we assume that a limited number of prior training examples may
be stored in memory and used to evaluate the plausibility of a
given decision bound. Finally, we assume that selection learn-
ers display a hypothesis-dependent sampling bias such that the
instances they choose to learn about are tied to their current
hypothesis in a systematic way. In our later simulations, we
evaluate the contribution of each of these assumptions to the
model’s performance.

Category rule representation. The model classifies items
using simple decision rules (similar to Ashby, Paul, & Maddox,
2011; Nosofsky & Palmeri, 1998), and the goal of learning is to
infer the rule that correctly classifies the most items. Each hypoth-
esis is represented as a linear decision bound that assigns a prob-
ability of category membership to each item in the space using
Equation 2. The model’s hypothesis on trial t is defined by two
parameters, ht ! (&t, bt), which control the position and orientation
of the decision boundary in the stimulus space (for simplicity, we
assume all decision bounds are deterministic).

Prior. The prior probability of a hypothesis h is defined as the
joint probability of its two parameters, p(h) ! p(&) p(b). Previous
research suggests that learners are strongly biased toward unidi-
mensional rules along either dimension in the early stages of
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Figure 10. Variability of best fit decision-bound parameters between test blocks (measured as average
difference in absolute value of each parameter between subsequent blocks). Variability in both & and b was
greater in the information-integration (II) task than in the rule-based (RB) task because participants were less
successful at learning the diagonal rule. Variability between early blocks was the same for selection and yoked
participants. In late blocks, variability decreased more for selection than yoked learners. Notably, in the II task,
the average change in & for the yoked group in the second half of the task was approximately equal to a change
from a unidimensional rule to a diagonal rule (marked by the horizontal line). Variability in the best fit value
of ' (transformed to log scale) was higher in the RB task than II task, but there were no differences between
training conditions.
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learning (cf. Heller, Sanborn, & Chater, 2009). Accordingly, we
defined a prior over &, the angle of the vector corresponding to the
decision boundary, which favored axis-aligned rules (see Figure
11). For a given value of &, the relative distance r of the decision
bound from the nearest orthogonal axes is given by:

r $
2

(#% mod
(

2$, (3)

which is bound between 0 and 1, with mod referring to the
arithmetic modulo. r is assumed to have the following distribution:

r % Beta!), )". (4)

New values of & are generated by randomly choosing a quadrant
(defined by k, an integer between 0 and 3) and sampling a value of
r, which then determine the value of &:

% $
(

2
(k & r). (5)

Under this prior, ) acts as an abstract decision weight for the two
stimulus dimensions. When ) $ 1, there is a general preference for
axis-orthogonal rules that involve only a single dimension
(whereas ) ! 1 implies no preference for rules of a particular
orientation). A prior for unidimensional rules (i.e., when ) $ 1) is
consistent with a large body of empirical and theoretical work
suggesting that learners find axis-aligned boundaries easier to
learn and are most likely to be used early in learning (Ashby et al.,
1998, 2002, 1999).7 The prior over the bias term was a uniform
distribution over the stimulus space.

Generating new hypotheses. With this representation of de-
cision rules and prior, a Bayesian learner would evaluate the
posterior probability of all possible hypotheses given a set of
observations D according to Equations 1 and 2. However, given
capacity limitations, it is unlikely that participants can simultane-
ously update and represent this entire hypothesis space. Instead,
we assume that at any point in time, a learner uses a single
hypothesis ht as the basis for classification and that on each trial,
they consider making a change to the current hypothesis. This
makes our model more consistent with the large literature on
sequential hypothesis-testing models of learning (Gregg & Simon,
1967; Trabasso & Bower, 1964; Trabasso et al., 1968) along with
more recent variants such as RULEX (Nosofsky et al., 1994) or the
explicit learning system in COVIS (Ashby et al., 1998).

The stochastic procedure for generating hypotheses is as fol-
lows: On each trial, one of the two parameters (&t, bt) is randomly
modified to create a proposal, h=. A free parameter p& sets the
probability that & is modified, in which case a new value &= is
simply generated from the prior. When b is modified, a new value
is sampled from a Gaussian distribution centered on the current
value b= * N(bt, sb). By this mechanism, the learner considers
either local changes in the position of the decision bound in the
feature space (by adjusting b) or a change in the relative weight of
the two features (by sampling a new value for &).

After a proposal has been generated, the learner either adopts or
rejects it on the basis of the acceptance ratio a, the relative
posterior likelihood of the existing and proposal hypotheses (given

by a $
p!D!h'"p!h'"
p!D!ht"p!ht"

, where p(D|h) is the likelihood from Equation

2, and p(h) the prior described in the previous section). If the
posterior likelihood of the proposal is equal to or greater than
that of the previous hypothesis (i.e., if a * 1), it is accepted as
the new active hypothesis (i.e., ht+1 ! h=). If the proposal
results in a worse account of past data, it is accepted in
proportion to the acceptance ratio. Otherwise, the current pa-
rameter estimate remains unchanged.8

The psychological demands of this process are low: On each
trial, the learner must simply generate a new hypothesis and judge
its quality relative to the single existing hypothesis. Sometimes a
proposal is accepted and becomes the active decision bound, and
other times it is rejected as being a worse account of recent training
data. This procedure is closely related to simple Win-Stay-Lose-
Shift heuristics for sequential hypothesis testing (Trabasso et al.,
1968). Note that in comparison to the simpler model described in
the introduction, this procedure does not require that a consistent
hypothesis is found on each trial (an assumption that would gen-
erally lead to higher performance than observed in the experiment,
particularly in the II task).

Limited memory. Our analysis of how participants changed
their decision rules over the course of the task suggested that
learners typically do not optimally integrate past observations,
which is contradicted in particular by large changes in the form of
the decision rule late in training. In the model we use the parameter
n to specify the number of recent observations that are used to
evaluate the likelihood of a hypothesis and (based on our empirical
results) expected that n was likely to be relatively low for our
participants.

A small memory capacity for previous observations leads to
greater overall variability in the decision bound over the course of
learning. For example, given a prior favoring unidimensional rules
and few observations, the estimate of & will tend to bounce
between different modes of the hypothesis space. When n is low,
convergence on the correct hypothesis will depend on the infor-
mativeness of the most recent training samples. When n is high,
the model will tend to learn more quickly and have less variability
in its decision rules.

Hypothesis-dependent sampling bias. Finally, we assumed
that selection learners exhibit a hypothesis-dependent sampling
bias whereby they choose to query instances that fall along their
current decision bound. This assumption is supported by our
empirical results in Figure 6 and 8B, which suggest preferential
sampling of examples near the learner’s current estimate of the
boundary between the two categories. In addition, this strategy can

7 Specifically, our approach is most similar to COVIS (Ashby et al.,
1998), in which an explicit rule-generating system competes with an
implicit exemplar-based system to produce responses. As mentioned ear-
lier, in prior work with these types of tasks, learners appear to rely initially
on the explicit system, with a bias toward using unidimensional rules for
classification. This would be consistent with a computational level induc-
tive bias toward simpler rule structures (Feldman, 2000; Kemp, 2012). Our
prior captures this preference by assigning higher a priori likelihood to
rules that involve attention to a single dimension.

8 This procedure is identical to an algorithm in the statistics literature known
as the Metropolis-Hastings (MH) algorithm, a form of Markov-Chain Monte
Carlo (Metropolis & Ulam, 1949). This relationship draws our approach in line
with recent efforts in developing “rational process models,” which approxi-
mate Bayesian inference using hypothesis space sampling approaches (Brown
& Steyvers, 2009; Vul, Goodman, Griffiths, & Tenenbaum, 2009a; Vul,
Tenenbaum, et al., 2009b).
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be motivated normatively by many theories of rational information
acquisition (Nelson, 2005; Oaksford & Chater, 1994) and by
research in machine learning, which emphasizes margin sampling
(a learning strategy of sampling at the boundary of a classifier).
According to our theory, the magnitude of the sampling bias—
how close to the boundary samples are selected—will affect the
relative performance of the selection and yoked reception learners.

On each trial, a new selection x is sampled from a region
proximal to the current decision bound according to the following:

d1 % N!bt, S"
d2 % U!0, 1" (6)

x $ d1u1 & d2u2

where u1 and u2 are unit vectors that are orthogonal and parallel to
the current decision bound, respectively. As a result, S controls the
average orthogonal distance of new selections from the current
hypothesis, whereas the location of those selections in the direction
parallel to the current bound is uniformly distributed. Changes in
the S parameter correspond to the difference between “strong” and
“weak” hypothesis-dependent sampling biases that may vary be-
tween individuals or groups.

Simulation 1: Fitting Participants’ Classification
Performance

Our first goal was to evaluate whether the model could capture
the overall pattern of results found in our experiment. Five hundred
runs of selection, reception, and yoked reception models were
trained in both RB and II tasks. Selection models generated new
observations on each trial (using Equation 6), but were otherwise
identical to reception models, with the exact same parameter
settings shared across all three groups and for both the RB and II
tasks. For each run of the selection model, a paired yoked model
was given the same sequence of training examples. Reception
models were trained with data generated from the same distribu-

tions as in the behavioral experiment. For all training conditions,
the model was tested on a uniform grid of items on the same trials
as in the experiment.

Average classification accuracy in each condition was compared
with the human data from our experiment using root-mean-square
error (RMSE). Using standard optimization procedures (grid
searches along with Nelder-Mead simplex algorithm), we sought a
single set of parameters that minimized the RMSE score. Table 2
shows the values of the best fit parameters. The results (see Figure
12B) capture the overall pattern of results from our experiment.
First, accuracy was greater in the RB task than in the II task in all
conditions. This effect is dependent on two main assumptions in
the model: a prior bias toward unidimensional rules and a small
memory for recent observations. In the RB task, a greater propen-
sity for generating unidimensional rules (see the Prior section)
allows the model to converge on the correct form relatively
quickly, and over the course of learning refine its exact location by
adjusting the bias term. Once the model has discovered the correct
RB rule, relatively few instances are then necessary to maintain
that rule.

In the II task, the model is less likely to generate the correct
diagonal rule as a result of the unidimensional bias. Moreover,
even when that rule is adopted at some point during training, the
small number of observations held in memory is less effective at
maintaining it when it is compared with a unidimensional alterna-
tive (which is more likely according to the prior). As a result,
throughout learning, the active hypothesis alternates between
modes of the posterior corresponding to suboptimal axis-
orthogonal rules. Consistent with our behavioral results, the model
can successfully acquire the correct II rule, but it is less likely to
maintain that hypothesis over time.

The difference between these two tasks is also reflected in the
pattern of selections generated (see Figure 13A). Like our behav-
ioral results, the selections begin widely distributed in both tasks.
As the model converges on the correct type of rule in the RB task,
the selections become tightly clustered around the true category
boundary, whereas in the II task, the pattern remains dispersed
throughout learning (leading to a lower average distance from the
true boundary for the RB task, as shown in Figure 13B). Note that,
because the degree of sampling bias was fixed for all models in
this simulation, this aggregate pattern arises from differences in the
sequence of hypotheses generated in each task rather than a dif-
ference in the ability to select useful information.

The selection model performed better than the random-reception
model in the RB task. As predicted, this occurs because the
selection model generates samples close to the true category
boundary, whereas the reception model is limited by the distribu-
tion of training samples. Inspection of the sequence of hypotheses
showed that the reception model had higher variability in the
bias term during learning, showing that the training data were less
effective at maintaining a hypothesis in the center of the stimulus
space. Notably, the difference between conditions does not occur
in the II task, in which the model is biased against generating the
correct form of rule in either training condition.

Finally, the simulation captures the divergence between selec-
tion and yoked reception learners in both tasks, despite sharing the
same training data and identical parameter settings. This diver-
gence arises directly from the model’s stochastic process of gen-
erating new hypotheses during learning, such that a single obser-

Prior distribution over
rule orientation (θ)

θ
0.0

1.0

0.5p(θ)

Figure 11. The distribution defining the prior bias for axis-aligned (uni-
dimensional) rules in the model. Each peak corresponds to a different rule
represented by the stimulus space divided into a white region for category
A and a gray region for category B.
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vation may differ in how it influences the acceptance of new
decision bounds (in the next simulation, we provide a systematic
demonstration of when this divergence arises).

The model captures the pattern of results from the experiment
and is particularly well matched to the RB task. The largest
discrepancy is for the II yoked reception group, where the
model predicts higher accuracy than was observed empirically.
However, the model’s performance in this condition is still
consistently below that of the II selection group throughout
learning (see Figure 12, right panel). Indeed, performance of the
model during the last block of training matches the empirical
results quite closely.

The main conclusion of this simulation is that a simple
interaction between a single-hypothesis search process and dif-
ferent modes of information sampling can affect learning out-
comes in the same manner observed in our experiment. Al-
though this simulation provides a “proof of concept” of how a
hypothesis-dependent sampling bias can influence learning, the
key principles in the model are well motivated by a large body
of work on hypothesis testing and category learning. The fit of
the model would undoubtedly improve by allowing parameters
to differ between individuals or groups in the experiment.
However, our emphasis here is not on exactly matching the
human data but on showing how the qualitative effects emerge
even under idealized situations. In addition, we do not entirely
reject the idea that there may be general attentional or motiva-
tional differences between conditions, but instead use our sim-
ulation results to illustrate how sampling and learning can
interact to strongly influence the patterns of learning in addition
to these factors. However, an important question is how the
parameters each contribute to fitting the pattern of results. This
is an issue we explore in more detail in Simulation 2.

Simulation 2: Diverging Outcomes due to
Hypothesis-Dependent Sampling Bias

Whereas Simulation 1 shows that the model can capture the
overall effects of training condition and category rule, a key aspect
of our theory is that a hypothesis-dependent sampling bias causes
a divergence in outcomes between selection and yoked reception
learners. Note that in our experiment, performance among selec-
tion learners was correlated with the distance of their samples from
the true category boundary (see Figure 8). In our model, the extent
of this sampling bias is controlled by the S parameter (the standard
deviation of a Gaussian centered on the current hypothesis). For
our second simulation, we systematically varied the S and n
parameters to evaluate the effects of the sampling bias under
different conditions.

The results (presented in Figure 14, first three columns) show
the effect of changing S at three different memory capacities (4, 8,
and 128). When selections are generated randomly (leftmost col-
umn), performance is equivalent for both selection and yoked
groups. As S decreases, new selections become increasingly biased
by the selection learner’s hypothesis. Consistent with our finding
of a strong relationship between sample distance and accuracy, this
decrease in distance from the current decision bound improves
performance for the selection model, while the same change in the
distribution of samples leads to lower yoked performance. Assum-
ing individual differences in the S parameter across participants

would thus explain the correlations between performance and
sample distance from the boundary reported in Figure 8 for both
selection and yoked learners (i.e., being yoked to a participant with
a high sampling bias would lead to lower performance for you, but
higher performance for them).

The divergence in accuracy is largest at low memory capacities
(4 and 8) but still present even when the model stores all of the
training data (n ! 128). Note that although a low value of n was
optimal for fitting our experimental results in Simulation 1, this
shows that the predicted divergence is not dependent on a small
memory capacity. Even when using all of the training data, the
model benefits from testing its current hypothesis because its
selections facilitate more efficient search of the hypothesis space.
For example, when the current hypothesis is incorrect, strongly
biased samples encourage the adoption of a new hypothesis. In
combination with the one-dimensional model described in the
introduction, these results further show that selection can be ad-
vantageous by virtue of its interaction with the hypothesis-
generation process across a variety of conditions.

What happens when there is a hypothesis-dependent sampling
bias, but new hypotheses are generated completely randomly? This
result is shown in the rightmost column of Figure 14. Here a strong
bias does not lead to any benefit for selection groups relative to
their yoked counterparts, for the simple reason that those selections
do not affect which hypotheses are generated next.

Although this simulation is a simplification of many aspects of
the behavior seen in our experiment (e.g., the extent of sampling
bias may have varied over time), it provides a mechanistic under-
standing of how selection, in combination with a stochastic, local
hypothesis-generation process, can affect the speed of learning. In
addition, the key principles of the model capture not only overall
trends in accuracy between the conditions but can account for the
pattern of samples observed as well as the relationship between
sampling bias and accuracy.

In general terms, our simulations show how, on its own, the
opportunity to select information is not necessarily enough to
improve performance relative to, for example, observing another
person’s actions. First, it must be possible for the learner to select
information to test his or her specific hypothesis. Second, this must
facilitate the adoption of new hypotheses that are more likely to be
correct. If either new instances or new hypotheses are generated
randomly, an ability to select data will not lead to any advantage.

General Discussion

In their landmark work on concept acquisition, Bruner et al.
(1956) discussed the distinction between learning through se-
lection, a self-directed information-sampling strategy, and

Table 2
Best Fit Parameters

Symbol Value Parameter meaning

n 8 Number of observations
) 0.2 Prior weight
p& 0.3 Probability of modifying &
sb 0.15 Width of proposal distributions for b
S 0.1 Width of selection distribution
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learning through reception, a passive mode relying on whatever
data happens to be encountered in the environment. Both forms
of learning have been the focus of extensive— but relatively
independent—research programs in cognitive psychology.
Work on hypothesis testing and diagnostic reasoning has sought
to understand how people select data to evaluate one or more
hypotheses. In contrast, research on concept and category learn-
ing has focused predominantly on reception, with the typical
experimental approach ensuring that all participants experience
the same, carefully controlled distribution of items. One con-
sequence of this focus is that existing models fail to account for
how people might make selection decisions during learning, or
how these decisions might influence patterns of acquisition
(Gigerenzer, 2006). This limits the generalizability of these

theories relative to the range of strategies people use during
natural category learning.

The aim of the present study was to understand the conse-
quences of selection and reception within the context of a simple,
well-studied category learning task. We evaluated two reasons for
a selection advantage as compared with reception-based learning.
First, selection learning can be more efficient relative to passive
reception of data from the environment because it allows the
learner to focus on information that will be useful. Second, selec-
tion learning can also be superior to “yoked” reception of the same
training set because the data that are generated are tied to the
sequence of hypotheses held by the selection learner.

We have proposed that, in both cases, this advantage depends on
a sampling bias that results from being able to choose what to learn

Figure 12. Simulation 1 results. Left: Overall expected accuracy by training condition for human participants
(bars) and best fitting model (circles). Right: Accuracy by test block for best fit model. S ! Selection; R !
Reception; Y ! Yoked reception; RB ! rule based; II ! information integration.

Figure 13. A: Simulated distributions of samples generated by the selection model over the course of training.
Similar to the human data in Figure 6, in the rule-based (RB) task, the model’s selections are increasingly drawn
from the true category boundary over time, whereas in the information-integraion (II) task, they appear more
diffuse. B: Average distance of samples from the true category boundary in both tasks from Simulation 1. As
in the human data, the average distance is lower in the RB task than in the II task.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

21LEARNING VIA ACTIVE AND PASSIVE HYPOTHESIS TESTING



about. It is important to note that we use the term bias in the sense
that the selection of new data depends on the learner’s current
beliefs, rather than to imply that those decisions are incorrect. A
selection learner may collect data that are strongly biased by their
current hypothesis, but also ineffective for learning, as seen in
many kinds of confirmation bias (Nickerson, 1998; see also Den-
rell & Le Mens, 2011). Accordingly, our goal was not to prescribe
either selection or reception as a better learning method in general,
but rather to explain the effects of each strategy on a common
learning process.

Benefits of Selection Depend on Rule Complexity

Previous research has often attributed a selection learning
advantage to being more mentally “active” or engaged in dif-
ferent kinds of cognitive processing (Chi, 2009; Elio & Lin,
1994; Smalley, 1974; Voss et al., 2011). It is self-evident that
selection learning requires active decision making about what
information to collect and that this involves processes that are
not necessary for receptive, observational learning. It is not
clear, however, that an advantage for selection learning (when

Figure 14. Simulation 2 results, comparing classification accuracy by block for selection (black lines) and
yoked reception (gray lines) models in the rule-based (RB) (solid) and information-integration (II) (dashed)
tasks. The number of recent observations retained in memory (n) varies across the rows, with the top row
indicating the model’s performance when all training items are remembered perfectly. The left three columns
correspond to the model with a local, stochastic hypothesis-generation process, as described in the text, at three
different levels of sampling bias: random, weak (S ! 0.2) and strong (S ! 0.1). Under random sampling, there
is no difference between selection and yoked reception learners, but as sampling bias increases (i.e., for lower
values of S), the two conditions diverge. This divergence is found at all memory capacities but is strongest when
few items are stored in memory. The rightmost column provides the same comparison when there is a strong
bias, but new hypotheses are generated randomly from the prior on every trial. Under random-hypothesis
generation, there is no advantage for selection learning over yoked reception learning, showing that the benefit
of making selections depends on their interaction with the hypothesis-generation process.
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present) is entirely a by-product of those decision-related pro-
cesses. Moreover, such an explanation is clearly inadequate
when an advantage is not found even though selection decisions
were involved and all that changed was the form of the target
concept (e.g., as observed in our II task).

According to our account, advantages from selection learning
can result from a stochastic, sequential hypothesis-testing pro-
cess. First, when the true category structure is consistent with
their prior biases, selection learners can adaptively collect in-
formation that is more useful than a typical data set specified by
the experimenter. Second, the asymmetry in learning outcomes
associated with selection and yoked learners derives directly
from the way in which participants search the space of hypoth-
eses during learning, and the simple fact that selection learners
choose data to test their specific beliefs, whereas the yoked
learner cannot. This account assumes identical hypothesis
spaces, learning strategies, parameters, and priors for all
groups.

An important inspiration for the present study is machine learn-
ing research showing that allowing artificial learners to select
information about which they are uncertain can improve learning
efficiency in a broad range of real-world problems (Castro et al.,
2009; Cohn et al., 1992; Dasgupta et al., 2005; Mackay, 1992;
Settles, 2009). Our results show that achieving similar improve-
ments in efficiency in human learners depends on the structure of
the concept being learned. In our II task, there was no benefit for
selection learning over observation of randomly generated in-
stances. More importantly, the II selection group performed con-
siderably worse than the RB selection group, despite sampling
the same amount of data under identical conditions. This finding
supports previous demonstrations that the benefits of selection
strongly depend on the nature and difficulty of the task (Enkvist et
al., 2006; Schwartz, 1966).

In our simulations, we accounted for this difference by as-
suming that learners have a strong prior bias toward simple,
unidimensional rules (Ashby et al., 2002, 1999; Gureckis &
Love, 2002), which interferes with the discovery of the correct
II rule. This is consistent with how many existing models of
category learning have attempted to incorporate aspects of rule
learning. For example, RULEX (Nosofsky & Palmeri, 1998)
assumes a stochastic process of rule generation and a preference
for simple unidimensional rules, while allowing for encoding of
individual exceptions to the hypothesized rule. Similarly, CO-
VIS (Ashby et al., 2011) proposes that a rule-learning system
represents a set of potential rules (generally single-dimensional
or conjunctive/disjunctive rules on two dimensions) that vary in
their initial weight, but with preference given to simpler, axis-
aligned rules.

Beyond the specifics of this category learning task, our results
suggest that the advantages for selection learning strongly depend
on the structure of the learning problem and how it relates to prior
biases the learner brings to the task. In cases in which learners’
prior beliefs are inconsistent with the true concept, their choice of
which information to test may be systematically biased, and, as a
result, learning may be less successful. These principles may hold
important lessons for selection-based learning across a wide range
of learning problems, particularly those that involve sequential
hypothesis testing.

Different Learning Outcomes From the Same Data:
Hypothesis-Dependent Sampling Bias or Sampling
Assumptions?

An important finding from our experiment was that yoked
participants who saw the same observations performed systemat-
ically worse than their counterparts in the selection condition.
Whereas this is a key prediction of the hypothesis-dependent
sampling bias, this systematic divergence in learning is difficult to
explain using existing models that update their beliefs through a
common process (e.g., Kruschke, 1992; Love, Medin, & Gureckis,
2004; Nosofsky, 1984). For example, the “weak” Bayesian learn-
ing discussed in the introduction is unable to predict the systematic
differences between the selection and yoked learners. In some of
these theories, the results might be partially accommodated by
assuming a difference in some general learning parameters or
learning process between groups (e.g., memory strength or learn-
ing rate). However, such theories would still need modification to
explain other aspects of the data such as the systematic patterns
shown in Figure 8.

However, the idea that two learners who experience the same
data might learn different things is not without precedent in the
literature. For example, recent work with Bayesian models of
cognition has argued that people adopt different likelihood func-
tions depending on their assumptions about the process that gen-
erated observations (Tenenbaum, 1999; Tenenbaum & Griffiths,
2001). These accounts of sampling assumptions differ importantly
from our proposal of the hypothesis-dependent sampling bias and
are worthy of consideration.

The basic idea behind sampling assumptions is that it is often
possible to make more specific inferences from a set of positive
examples if the learner knows how examples were selected
(Mitchell, 1997). According to “weak sampling” (which corre-
sponds to the Bayesian model from the introduction), the learner
assumes the examples are chosen independently of the true con-
cept. This is often the default assumption made in traditional
Bayesian learning models (see Navarro, Dry, & Lee, 2012, and
Tenenbaum & Griffiths, 2001, for a discussion). In contrast,
“strong sampling” assumes that the generating process itself is
informative about the underlying concept. Selection (or learner-
driven) learning is often argued to justify a “weak sampling”
assumption because the learner should recognize that his or her
own selection decisions are independent of the target concept
(because they do not yet know it). In contrast, “strong sampling”
is justified in settings in which learners are instructed by a knowl-
edgeable teacher (Gweon, Tenenbaum, & Schultz, 2010; Xu &
Tenenbaum, 2007a, 2007b). A third type of sampling is “peda-
gogical sampling,” which entails a more complex set of assump-
tions about how teachers might select examples to be maximally
helpful to the learner (Shafto & Goodman, 2008; Shafto et al.,
2012).

Xu and Tenenbaum (2007a) explored how children and adults
generalized novel words (e.g., wug) given only positive examples
of the concept in both learner-driven (i.e., selection) and teacher-
driven (reception, roughly speaking) conditions. In the learner-
driven condition, participants pointed at objects and requested their
label or name. In the teacher-driven condition, the experimenter
selected examples and provided a label for the object. The study
was designed so that the set of examples viewed by both groups

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

23LEARNING VIA ACTIVE AND PASSIVE HYPOTHESIS TESTING



was always identical, the only difference being who chose them
(either the learner or the teacher). The results showed that both
children and adults made more restrictive generalizations of the
novel word in the teacher-driven condition compared with the
learner-driven condition, suggesting that knowledge about how
samples were gathered influenced learning. Xu and Tenenbaum
modeled the learner-driven condition as following the weak sam-
pling assumption (Xu & Tenenbaum, 2007a, p. 292), whereas they
assumed strong sampling when a teacher provided examples (such
as on the first trial of the learner-driven condition, or in all trials of
the teacher-driven condition).

Despite the fact that the learner-driven and teacher-driven dis-
tinction introduced by Xu and Tenenbaum (2007a) is very similar
to Bruner et al.’s (1956) distinction between selection and
reception-based hypothesis testing, it is not clear that sampling
assumptions are the most appropriate way to interpret the results of
the present study. For example, in most of the work on strong
versus weak sampling, the emphasis is on learning generative
models from positive examples alone (cf. Navarro et al., 2012;
Tenenbaum, 1999; Tenenbaum & Griffiths, 2001; Xu & Tenen-
baum, 2007b). In this case, strong sampling assumptions can lead
to faster learning because the modified likelihood function can
pick out more specific concepts with fewer training examples.
However, irrespective of sampling assumptions, the location of a
dichotomous category distinction can be accurately specified using
only a few training items, especially when those examples fall
close to the true category boundary. This tends to lessen the
influence that sampling assumptions might have on the learning
process. In addition, we found no difference in accuracy between
yoked learners (i.e., the naïve vs. aware groups) whether or not
they were aware of the source of their training data, suggesting that
such knowledge did not play a significant role. Finally, it is unclear
that any of our conditions could be construed as “teaching” in the
same sense as the teacher-led condition in Xu and Tenenbaum
(2007a) or as addressed in theories of pedagogical sampling
(Shafto & Goodman, 2008; Shafto et al., 2012).

In sum, although the hypothesis-dependent sampling bias and
sampling assumptions are both proposals about how learning
might change depending on the role the learner has in gathering the
data, they may be complementary theories that apply in different
learning contexts. In our study, it appears that the relationship
between sampling biases and the hypothesis-generation process
provides a better account.

The Source of Hypothesis-Dependent Sampling Biases

As shown in Figure 6, our selection procedure provides a rich
source of data about how people search for information while
learning. Perhaps the most striking pattern was that participants in
the RB task concentrated their samples near the true category
boundary in the latter part of the task. We have shown that this
pattern could arise by assuming that people are more likely to
select items near their currently hypothesized category boundary.
Over time, as their hypothesis becomes more similar to the true
boundary, samples are increasingly clustered close to it as well.
Selecting items from the boundary of the current hypothesis is a
reasonable strategy if there is greater uncertainty within that region
of the stimulus space, in which case those items will convey more
useful information for learning. Of course, it is possible that

selection learners’ ability to sample in this region simply reflects
learning that has already occurred. This seems unlikely, however,
given that participants continue to sample near the category bound-
ary even after achieving high performance (in the RB task) despite
the added effort required to design samples.

The question of how humans make intuitive judgments about
the “usefulness” of new observations has been the focus of exten-
sive study in the hypothesis-testing literature (Ginzberg & Se-
jnowski, 1996; Klayman & Ha, 1987; Oaksford & Chater, 1994;
Skov & Sherman, 1986; Wason, 1960). Early findings raised
concerns about the human ability to identify the value of future
information (e.g., the pervasive evidence of confirmation bias;
Wason, 1960; see also Nickerson, 1998, for a review). Our study
provides a counterexample to this well-known effect in that par-
ticipants quite effectively sought discriminating information about
the categories in the RB task. However, at this point, our sampling
data do not uniquely support any particular model of selection
decisions (e.g., impact, information gain, and probability gain all
make somewhat similar predictions in the current task; see Nelson,
2005). In our simulations, we simply assumed that those decisions
were systematically biased by the learner’s current hypothesis.
However, Markant and Gureckis (2012) used a more complex
category structure to distinguish the information-sampling strategy
that selection participants used. In that study, participants were
asked to report their uncertainty about how to classify items that
they selected, and the authors found that particpants frequently
chose items that fell near the subjective boundary between two
possible categories (similar to the finding of sampling at the
category boundary explored here).

It is interesting that participants in the II task were generally
unable to sample as effectively as RB participants. It is undoubt-
edly more difficult to design samples that fall along the diagonal
because it requires specifying values along both stimulus dimen-
sions. Notwithstanding the increased effort required, one explana-
tion might be that participants in the II task are in fact sampling
effectively (i.e., in regions of the space for which they are most
uncertain). However, this uncertainty is evaluated with respect to
the limited and biased set of hypotheses the learner is actually
considering at any point in time (Bonawitz & Griffiths, 2010).
Consistent with the above discussion, our decision-bound analyses
suggested that learners in the II task persisted in using simple,
unidimensional rules throughout the task. Thus, the pattern of
diffuse selections in the II task could reflect sampling along a
suboptimal and frequently shifting unidimensional boundary. Be-
cause II learners in our task never achieved the same high perfor-
mance as RB participants, we were unable to observe whether the
same convergence of samples on the true decision boundary might
occur.

Although our account of a hypothesis-dependent sampling bias
can account for many aspects of our results, the actual pattern of
sampling data we observed in our experiment might reflect a
mixture of multiple processes or a shift in strategy over time. For
example, selection may serve an adaptive memory function by
allowing participants to remind themselves of past experiences that
have been forgotten. Indeed, certain instances of what might look
like “confirmation bias” in our task (e.g., selecting an item that
should be easy to classify given what they have already seen) may
simply be participants’ attempt to remind themselves about par-
ticular regions of the stimulus space or to verify that the task
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structure has not changed. In general, however, the results are
consistent with people selecting items that they are uncertain about
how to classify.

Relation to Other Theories of Sequential Hypothesis
Testing

Our modeling framework draws heavily from a large and influ-
ential literature on sequential hypothesis testing (Gregg & Simon,
1967; Millward & Spoehr, 1973; Nosofsky & Palmeri, 1998;
Thomas et al., 2008; Trabasso & Bower, 1964). According to these
models, learners maintain a limited set of active hypotheses at any
given point during learning and use new observations to eliminate
entries in that set. The makeup of the current set of hypotheses
influences how one evaluates data and generates new hypotheses
(Thomas et al., 2008).

One difference is that our proposal for the mechanism by which
new hypotheses are generated draws from Monte Carlo techniques
developed in the Bayesian statistics literature (Metropolis & Ulam,
1949). Such approaches have recently gathered considerable at-
tention in the cognitive modeling literature because they help to
relate both computational and mechanistic levels of explanation
(Brown & Steyvers, 2009; Ullman, Goodman, & Tenenbaum,
2010). It is interesting to consider the relationship between these
newer approaches and the classic models of hypothesis testing that
are also based on Markov processes. Although sharing many
features in common, there are a number of attractive features of the
new approach that go beyond older work on serial hypothesis
testing. First, so-called rational process models allow one to spec-
ify a prior over hypotheses, which is particularly useful when that
prior governs an abstract property of many hypotheses (e.g., a
preference for simple rules on any one dimension). Second, be-
cause the models are approximations to a fully Bayesian solution,
they allow characterization of suboptimalities in people’s behavior
(Brown & Steyvers, 2009). Understanding how people diverge
from an optimal solution may help to narrow the range of potential
process models that are appropriate.

Conclusions

Both selection and reception are common ways for people to
learn in the real world, but they have rarely been compared directly
in experimental contexts. Our results join a growing number of
studies in demonstrating that, under certain conditions, people can
effectively speed their own learning through self-directed explo-
ration of their environment (Atkinson, 1972a, 1972b; Castro et al.,
2009; Fazio, Eiser, & Shook, 2004; Sobel & Kushnir, 2006;
Steyvers et al., 2003). We found that selection learners were able
to make informative queries to support their learning, but were
more successful at doing this for RB categories than II categories.
In addition, selection learners systematically outperformed partic-
ipants who were yoked to their observations. We have argued that
accounting for the differences between selection and reception
depends on a better understanding of how people use their existing
hypotheses to collect information, and how the outcome of that
process changes the potential for learning relative to passive ob-
servation.
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Appendix

Simulating Selection and Yoked Reception in Unidimensional Rule Learning

In the Implications of a Hypothesis-Dependent Sampling Bias
for Learning section, we compared selection and yoked reception
in a basic unidimensional problem, the details of which are pro-
vided here. The learner’s goal is to identify the boundary between
two categories along a single feature dimension, represented by the
criterion h! ! 0.5. The set of possible hypotheses H is composed
of any value in the range (0, 1), and each hypothesis h ! H
deterministically predicts the category label (Category A when x +
h, Category B otherwise).

Falsification From a Single Observation

First, we considered the likelihood of a learner falsifying a
random initial hypothesis following a single observation. We
compared three conditions: (a) selection learning with a strong
hypothesis-dependent sampling bias, (b) selection learning with
a weak sampling bias, and (c) yoked reception. In selection
learning, new observations are random samples from a normal
distribution centered on the current hypothesis with standard
deviation S (for the strong condition, S ! .2; for the weak
condition, S ! .8). Falsification results from any observation in
the interval between the current hypothesis and the true crite-
rion (i.e., where the feedback is inconsistent with the current
hypothesis). The probability of falsification is thus the integral
of the probability density function of the sampling distribution
over that interval.

For the yoked condition, the first observation is generated
independently of its initial hypothesis (because the item is
chosen by the selection learner). For a given pair of hypotheses
held by the selection and yoked learners, the probability of
falsification for the yoked learner is given by the integral of the
sampling distribution (centered on the selection learner’s hy-
pothesis) over the interval between the true boundary and the
yoked learner’s hypothesis. Given that the two learners’ hy-
potheses are independent, the probability of falsification for the
yoked learner is then found by averaging over all possible
initial hypotheses that could be held by the linked selection
learner.

Under these minimal assumptions, there is a benefit to se-
lecting data in terms of the probability of falsification, with the
selection learner having a greater likelihood of falsifying their
initial hypothesis (see Figure A1). Moreover, the advantage is
greater under a strong bias because the observation is more
likely to fall in the critical region between the hypothesized and
true boundaries. In yoked reception, however, observations are
generated independently of the learner’s hypothesis, and as a
result, the probability of falsification will be lower (on average)
than if the learner was able to choose data to test his or her
hypothesis.

Effect on Learning Efficiency

We next assessed the impact of training condition on learning
efficiency over a number of trials. First we compared perfor-
mance for two learners that begin with the same hypothesis
(h0 ! .1) but get data through (a) random reception or (b)
selection. In the selection condition, new observations were
random samples from a normal distribution centered on the
current hypothesis (with standard deviation S), as above. In the
random-reception condition, new observations were uniformly
distributed samples from the full stimulus range. In addition, we
measured performance for a separate model that learned
through yoked reception of the data generated by the selection
model. For the yoked reception model, we focused on the case
in which the learner begins with a different hypothesis from that
of the selection learner (h0 ! .9). We simulated each condition
under both weak (S ! .8) and strong (S ! .2) hypothesis-
dependent sampling bias. Three basic assumptions about the
learning process were introduced: (a) The learner only uses the
most recent observation to evaluate their hypothesis (n ! 1),

(Appendix continues)

Figure A1. Probability of falsifying a randomly chosen initial hypothesis
for unidimensional simulation described in the Appendix. When the initial
hypothesis corresponds to the true boundary (h ! 0.5), the probability of
falsifying it is zero for all conditions. For other initial hypotheses, there is
an advantage for selection learning over reception. In addition, a stronger
bias in the selection condition (i.e., a more narrow distribution centered on
the current hypothesis) increases the chances of observing an item that will
lead to falsification.
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(b) new hypotheses are generated only in response to falsifica-
tion, and (c) new hypotheses are generated by randomly sam-
pling from H until a consistent hypothesis is found. These
assumptions amount to a very simple Win-Stay-Lose-Shift
learning rule with “local consistency” (i.e., newly generated
hypotheses must be consistent with the observation that led to
falsification; see Gregg & Simon, 1967).

We simulated 2,000 runs of the model in each condition, with
the observations generated by the selection model used to train
the yoked model. Performance was evaluated by measuring the
absolute error between the true category boundary (h! ! .5) and

the model’s current hypothesis over the course of 10 training
trials. The result (see Figure 4) shows that selection leads to
faster learning than both random reception and yoked reception
in the context of this simple form of hypothesis testing. Impor-
tantly, however, the advantage of selection relative to both
reception conditions is attenuated when the sampling bias is
weak (see the right panel of Figure 4).
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