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Abstract

Adaptive decision making often entails learning to approach
things that lead to positive outcomes while avoiding things that
are negative. The decision to avoid something removes the risk
of a negative experience but also forgoes the opportunity to ob-
tain information, specifically that a seemingly negative option
is actually positive. This paper explores how people learn to
approach or avoid objects with uncertain payoffs. We provide
a computational-level analysis of optimal decision making in
this problem which quantifies how the probability of encoun-
tering an object in the future should impact the decision to ap-
proach or avoid it. A large experiment conducted online shows
that most people intuitively take into account both their uncer-
tainty and the value of information when deciding to approach
seemingly bad things.
Keywords: decision making, approach-or-avoid behavior,
value of information, sequential decision making

From talking to a stranger to trying a new restaurant, peo-
ple often enter into situations with uncertain outcomes. Ap-
proaching, sampling, or interacting with unknown options al-
lows highly rewarding situations to be discovered, but also
carries the risk of encountering negative outcomes (e.g., an
awkward conversation or bad meal). As a result, there is often
a tension between approaching new alternatives to discover
which are positive and avoiding those that could be negative.

Certain forms of adaptive approach-or-avoid behavior can
lead to systematically suboptimal behavior (March, 1996;
Denrell, 2007). For example, suppose there is a lecture series
that features an engaging speaker on most days but which also
has the occasional boring talk. You attend the series for the
first time at the start of the semester, happen to hear a boring
talk, and decide not to attend in the future. As a result, you
gain no information about how good or bad the subsequent
talks actually are.

The tendency to avoid alternatives and cease learning about
them after an early negative experience is known as the “hot
stove effect” and has been used to explain suboptimal behav-
ior and risk-aversion in both individuals and organizations
(Denrell & March, 2001; Denrell, 2005). While adaptive (in
the sense of changing based on experience), this strategy is
suboptimal because it doesn’t take into account the value of
the information gained by approaching or interacting with an
uncertain alternative. After a single boring talk, your uncer-
tainty about the seminar series might remain high. If you go
to a second lecture and it is also boring, your uncertainty in
your belief should drop and you likely will not attend a third.

But suppose that the second lecture is really good. This
new information should help revise your belief about the
quality of the series, and increase the chances you will go to
a third lecture. If the third is also good, you will likely go to
a fourth, and so on until you have enjoyed a whole semester

of mostly-good lectures. The critical point is that the poten-
tial future payoff of attending that second lecture if you were
wrong about the series being boring is far greater than the
potential loss from attending a few bad lectures if you were
right.

This intuitive example highlights a key aspect of approach-
avoid decisions. First, optimal decision making should take
into account not just the estimated valence (good or bad) of
an option but also the uncertainty about that estimate (Berry
& Fristedt, 1985; Denrell, 2007; Daw et al., 2006). Second, it
can be optimal in some cases to approach seemingly negative
outcomes due to the potential gain that could be experienced
in the future. This is due to the value of information which is
obtainable from continued approach decisions.

The goal of the present paper is to explore if and how peo-
ple intuitively utilize these aspects of approach/avoidance de-
cision making. While there is a large literature on the effect
of experience dependent sampling on approach/avoid behav-
ior (e.g., Denrell & March, 2001; Niv et al., 2002; Biele et
al., 2009; Fazio et al., 2004), there have been fewer empirical
tests of the idea that decision makers consider both uncer-
tainty and the value of information when making such deci-
sions (but see Meyer & Shi, 1995).

A computational analysis of approach-avoidance
decision making

The scenario we consider here concerns a decision maker
who is presented with a single prospect (which might repre-
sent an object, a person, a product, or a situation) at each point
in time and must decide to either approach or avoid it. Ap-
proach decisions result in experience with the prospect which
may be either negative or positive. Avoid decisions result in
no experience. Such a task corresponds to many real-world
decision problems people face in their lives. For scientists this
includes which seminar series to attend and which to skip.

Optimal approach-avoidance decision making Consider
the case in which a single prospect with Bernoulli payoffs
may be approached or avoided an indefinite number of times.
When it is approached, it has unknown probability p of yield-
ing a reward of 1, and probability 1− p of yielding a reward
of −1. Given a subjective belief about the value of p de-
scribed by a Beta distribution, Beta(α,β), the agent’s predic-
tion about the probability of reward is E[Beta(α,β)] = α

α+β
.

The posterior belief about p is updated to Beta(α+ 1,β) af-
ter an additional positive outcome, and to Beta(α,β+ 1) af-
ter an additional negative outcome. A natural initial setting
is α = β = 1 which corresponds a uniform subjective prior
distribution for p over the range [0,1]. Figure 1 (left panel)
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Figure 1: Left: Evolution in the posterior belief in the probability of a positive outcome p as a function of experienced outcomes. The model
starts with a uniform prior belief at (0,0) in the grid (Beta(α = 1,β = 1)). The grey region depicts the area under the probability density
function for p > 0.5 (i.e., mainly positive outcomes) Posteriors with one more negative than positive outcome are highlighted in blue. Top
right: Optimal choice policies for agents with a low discount rate (γ = 0.0, left), high discount rate (γ = 0.999, center) and the difference
between the choice policies (right). Grid axes denote different numbers of positive and negative experiences with the prospect. Bottom right:
An illustration of two stochastic policies (γ = {0.0,0.999},τ = 1,ε = 0.1). Ultimately the assumptions tend to “blur” the hard line between
approach and avoid in the optimal policy and make the probability of approaching slightly higher for negative prospects.

illustrates how posterior belief about the prospect changes as
positive and negative experiences accumulate.

Given a current observation set of α positive and β negative
outcomes, the total expected value of following the optimal
policy is V (α,β) = max{Qapproach(α,β),Qavoid} where

Qapproach(α,β) = E[Beta(α,β)][1+ γV (α+1,β)]
+(1−E[Beta(α,β)])[−1+ γV (α,β+1)]

=
α

α+β
[1+ γV (α+1,β)]

+
β

α+β
[−1+ γV (α,β+1)]

(1)

and Qavoid = 0. The optimal decision policy is to approach
when Qapproach is greater than Qavoid , and avoid otherwise.

The optimal decision strategy depends on a recurrence re-
lation between V (α,β), V (α+1,β), and V (α,β+1) To solve
the relation, it is possible to estimate V for all pairs α+β = N
for some large N and then work backwards towards V (1,1)
using dynamic programming (Gittins et al., 2011).

In Equation 1, γ is a free parameter denoting the degree to
which future rewards are discounted. When γ→ 0 the opti-
mal policy cares only about immediate reward and will not
consider the value of information possible from approaching.
As γ→ 1, the policy begins to take into account future en-
counters with the prospect and uncertainty about the current
estimate. The dependence of the current value of an action
upon the future (weighted by γ) is what helps the model to
avoid the “hot stove effect” (but see Denrell, 2007).

To help the reader develop an intuition, Figure 1 (right
panel, top) shows the optimal policy of two hypothetical
agents that value future rewards to different degrees. Each
agent ceases to approach the alternative when the potential
future payoffs, weighted by their likelihood, become less
valuable than the potential future losses. Because the poten-
tial positive outcomes are distributed far out into the future,
while the potential negative outcomes–the few more bad tri-

als before avoidance begins–are expected to occur quickly,
this threshold changes as a function of how much the model
values the future.

Observe also that as the number of positive outcomes expe-
rienced by the farsighted agent grows, the region in which a
seemingly negative prospect is still sampled becomes wider.
For example, with zero positive outcomes the farsighted
model stops sampling at five negative outcomes, but at three
positive outcomes the model stops sampling after not eight
but ten negative outcomes. This is because as the number of
total experiences increases, it takes more negative outcomes
relative to positive ones to become highly certain that the
prospect is negative. This can be seen most clearly by ex-
amining the posteriors highlighted in blue in the left panel of
Figure 1. In all of these cases, there has been one more neg-
ative outcome than positive outcome. But as the total num-
ber of trials increases the proportion of the posterior where
p > 0.5 grows larger, so the uncertainty about whether the
prospect is positive increases as well. Thus, one behavioral
signature of the optimal model is a region of uncertainty in
which the agent continues to sample negative prospects and
that grows with the total number of experiences.
Optimal decision making among multiple prospects The
logic behind the model just described generalizes to a situa-
tion where instead of one prospect, there are multiple, which
have independent probabilities of positive outcome pi and
which appear with some base rate or frequency fi, ∑ fi = 1
(e.g., each day a scientist can go or not go to a different sem-
inar, some of which meet more frequently than others). If
there is no uncertainty about the identity of the prospect pre-
sented on a given trial and assuming that the value of pi is
independently sampled from a uniform distribution for each
option, the optimal approach policy for each prospect can be
calculated independently.

However, differences in base rate of occurrence between
different prospects has a subtle influence on the optimal
policy. In particular, the nth future experience with a rare



prospect is further away in time than the nth future experi-
ence with a common prospect. One way to account for this
difference is through adjustment to the temporal discounting
parameter (γ) for each prospect. If the base value of the next
trial compared to the current one is γb, then the expected value
of the next trial for an alternative occurring with frequency f
is

γ f =
∞

∑
n=1

f · (1− f )n−1 · (γb)
n (2)

which decreases monotonically as f decreases. This means
that an optimal agent faced with rare and common prospects
will behave as though it values the future less when encoun-
tering rare prospects, and will begin avoiding these prospects
with less negative evidence (similar to the difference depicted
in Figure 1, top right).

Comparing human behavior and the optimal model An
optimal agent will approach a prospect on every trial until it
determines with sufficiently high certainty that the prospect
is negative, and then will never approach again. However,
it is plausible that human decision makers behave in a way
generally consistent with the model but decide more stochas-
tically. Following typical assumptions in the decision making
literature (Luce, 1959; Sutton & Barto, 1998), we assume the
model’s probability of approach, Pm is

Pm(approach) =
eQapproach·τ

eQapproach·τ + eQavoid ·τ
(3)

Where τ is a parameter that determines how deterministic the
participant is in responding, and Qapproach and Qavoid are the
expected values of approaching or avoiding on the current
trial and subsequently following the optimal policy (α and β

are implicit in the notation now). In general, the probability
of approaching is an increasing function of its value relative
to avoiding.

In addition we observed that participants occasionally ap-
proached a negative prospect even after avoiding it for several
trials. This behavior is not well captured by Equation 3 with-
out an extreme value of τ (near zero) but may plausibly reflect
an incorrect assumption about the non-stationarity of reward
probability for the prospects (basically “checking” to see if
reward probabilities have changed, e.g., Tversky & Edwards,
1966; Knox et al., 2011). To account for these choices, what-
ever their underlying cause, we let

P(approach) = (1− ε)Pm(approach)+ ε (4)

such that the model follows the stochastic optimal rule with
probability (1− ε) and approaches regardless of Qapproach
with probability ε. With ε > 0, the model has a small con-
stant probability of approaching on any trial. Figure 1 (right
panel, bottom) illustrates how the form of the optimal policy
is generally modified by these additional assumptions.

Two key principles of the optimal model The optimal de-
cision maker just described exposes two key behavioral prin-
ciples. First, the decision to approach or avoid is strongly

influenced by the current uncertainty in the estimate of p as-
sociated with a prospect. Second, the optimal decision policy
for γ > 0 takes into account the value associated with future
interaction with a prospect. This interacts in an interesting
way with the base rate or frequency of the prospect; informa-
tion gained about a rare prospect is expected to be applica-
ble less frequently and thus has less utility, such that at the
same level of overall uncertainty it is more advantageous to
approach a frequent prospect than an infrequent one.

Experiment
To investigate the effects of base rate and uncertainty on
approach-avoid decisions, we created an online video game
called the Mushroom Game. In the game, participants played
the role of field biologists cataloging and learning about the
edibility of mushroom species growing in different habitats.
The base rate of occurrence for different mushrooms was ma-
nipulated across the environments and our goal was to see
if participants adjusted their approach/avoid behavior in line
with the predictions of the optimal model.

Method
Participants One hundred fifty-two participants (65 women and
87 men) age 18 to 66 years (M = 33.0, SD = 10.2) completed the
task via Amazon Mechanical Turk. All participants were paid $2 for
participation with the possibility of earning a bonus that averaged
$1.02 and ranged from $0 to $1.60. Participants were instructed on
all aspects of the task and were required to pass a quiz demonstrating
comprehension of the instructions before entering the experiment.
Three participants required more than three tries to pass a quiz on
the instructions, and were excluded from all further analyses.

Materials Each participant played the Mushroom Game in two
habitats, which shared the same overall structure. Each habitat con-
tained four unique mushroom species which were taken from illus-
trations of actual mushroom species found online.

Procedure and design The experiment was divided into two
“habitats” within which the participant was asked to learn about lo-
cal mushroom species (e.g., “New England Forest”, or “Amazonian
Rainforest”). Within each habitat there were four distinct mushroom
species, two of which occurred with frequency 4/10 and two of
which appeared with frequency 1/10. One high-frequency and one
low-frequency species were healthy (i.e., rewarding) with probabil-
ity 0.7, while the other two species were poisonous (i.e., punishing)
with probability 0.7. The assignment of base rates, reward probabil-
ities, and the identity of fictitious mushroom species was randomly
determined for each participant.

Within each habitat, the game was broken into two phases. In
the first phase, participants observed a large, representative sample
of the mushrooms in the habitat. Mushrooms encountered in this
sample were depicted by gray dots which appeared on the screen
without participant input. Once the entire sample has been shown,
the species were highlighted one at a time and participants submit-
ted a “field report” by answering questions of the form “If you saw
10 mushrooms on your hike back through the [Habitat Name], how
many would you expect to be from the species [Species Name]?”
This ensured that participants noticed and encoded the relative fre-
quency of each species.

Figure 2 shows an example of the interface of the game. The
main feature of the interface is the “Field Log”, a row of icons rep-
resenting the local species with dots above each icon to represent the
mushrooms that have been observed from that species. These dots
effectively form a histogram showing the relative frequency of the
species. At the end of the first phase, the screen would look similar
to Figure 2 except with only gray dots visible.

In the decision-making phase, participants’ goal was to learn
which of the habitat’s mushroom species were healthy and which
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Figure 2: An example of the task interface from the decision phase
(see text for description).

were poisonous by eating or avoiding the mushrooms they came
across. During each trial of the decision-making phase, partici-
pants encountered a randomly selected mushroom and its species
was highlighted. The probability a mushroom was selected on any
trial was matched to the relative frequencies from the first phase.
Participants then chose to either eat or avoid the mushroom by click-
ing the appropriate button. Eating a mushroom revealed whether the
mushroom was healthy or poisonous, and added a green or red dot
to the species histogram on top the observation-phase observations
(which remained visible). Avoiding a mushroom revealed no infor-
mation about its healthiness, and added a gray dot like those seen
in the first phase to the species histogram. Since each mushroom
species had both a non-zero probability of being healthy and a non-
zero probability of being poisonous, participants had to sample each
species more than once to gain an accurate estimate of its healthi-
ness.

To aid visual estimation of the outcomes and frequencies, the dots
were organized on the screen so that grey dots appeared below red
dots which in turn appeared below green ones as seen in Figure 2.

Participants earned a cash bonus based on their ability to eat
healthy mushrooms while avoiding poisonous ones. Each partici-
pant’s potential bonus started at $0.50, and increased by $0.05 for
each healthy mushroom eaten but was reduced $0.05 for every un-
healthy mushroom eaten. Avoiding a mushroom had no effect on the
potential bonus. At the end of the experiment, the actual bonus was
chosen at random from the potential bonuses earned in the first and
second habitat.

Results

Performance Participants generally learned which species
were usually healthy and which were usually poisonous, ap-
proaching healthy species with probability 0.89 (SD = 0.16)
and poisonous species with probability 0.38 (SD = 0.20). The
average potential bonus was $1.08, compared with an aver-
age of $1.36 earned by a deterministic optimal model with
γ = 0.995. We found no difference in the probability of ap-
proaching healthy and poisonous species or the bonus earned
between participants’ first and second habitat and so collapse
across habitats for all analyses. Participants’ predictions in
the “field report” about how many times out of ten they would
see each species in the future were on average 0.91 off from
the true frequencies (SD = 1.01), showing that they were able
to estimate base rates with reasonable accuracy given his-
togram data.

Model-Based Analysis The predicted relationship between
uncertainty, base rates, and approach/avoid decision is com-
plex and multivariate. Thus, the most direct test of our hy-
pothesis is obtainable through model-based analyses of par-
ticipants’ trial-by-trial choice behavior. We consider six dif-
ferent models.

Stochastic optimal model with fixed base-rate (SO-F).
The first model behaves in accordance with the optimal
model described above but assumes that each of the four
mushrooms occurs with probability 1/4 on each trial. This
model effectively represents our null hypothesis that the
manipulation of base rate has no effect on participants’
choice behavior. This model is endowed with three free
parameters per participant (γ, τ, and ε).

Stochastic optimal model with variable base-rate (SO-V).
The second model represent the alternative hypothesis that
participants adjust their sampling behavior based on the base
rate of the mushrooms. This model is identical to the SO-F
model but adds one additional parameter: a freely varying
base rate parameter fl representing the (subjective) frequency
of each of the low-frequency mushroom. The base rates of
the high-frequency mushrooms were set to (1−2 fl)/2.

Critically, if participants behave optimally but do not take
the difference in the value of information caused by the dif-
ferent base rates into account in their sampling choices, they
will be better fit by SO-F. If they do take the difference of
base rates into account, they will be better fit by SO-V.

We also tested several alternative models which exhibit
similar properties to the optimal model but which should be
distinguishable based on behavioral data.

Random choice model. The first model is a baseline which
assumes that participants chose to approach all mushrooms
with some constant probability p.

Softmax reinforcement learning model (SM) . The SO-F
and SO-V models can be contrasted with a standard non-
forward-looking reinforcement learning based model (Sutton
& Barto, 1998). In this model, the probability of approaching
is based solely on the estimate of the value of approaching
learned from experience so far and the model is thus sus-
ceptible to the hot stove effect (Denrell, 2007). The esti-
mate of the value is updated after each approach according
to Qapproach = Qapproach +α · δ where δ = r−Qapproach, r is
the received reward, and α is a learning rate/recency parame-
ter (0 ≤ α ≤ 1) that controls the degree to which the current
estimate depends on the most recent rewards. The probability
of approaching is again determined by a probabilistic choice
rule, given by

Pm(approach) =
eQapproach·τ

eQapproach·τ +1
(5)

To this choice rule we added the same ε parameter as in the
optimal model, and used equation 4 to determine the actual
approach probability.

This model is an interesting competitor to the optimal
model for a few reasons. First, it maintains only a point esti-
mate of the value of each decision option rather than the full



Table 1: Summary of model fits

Name # Param. BIC(mean) % best fit
SO-V 4 174.0 56
SO-F 3 179.4 21
SM-V 5 189.8 7
SM-F 4 189.6 4
SM-0 3 202.7 6
Rand. 1 302.1 7

Table 2: Median(mean) optimal model parameters

Name γ τ ε fl
SO-V 0.99(0.91) 0.29(0.39) 0.05(0.09) 0.05(0.08)
SO-F 0.80(0.70) 0.14(0.43) 0.07(0.11)

uncertainties depicted in Figure 1 (left). Second, it is not sen-
sitive to the future utility of particular outcomes. It can how-
ever mimic some aspects of the optimal policy. For example,
if the model is given an additional set of parameters corre-
sponding to the initial values of Qapproach for each prospect,
this can be used to encourage exploratory approach behav-
ior since it may take several negative outcomes to lower the
Qapproach value past zero (“optimistic initialization” in the
RL literature Sutton & Barto, 1998). The softmax model may
also account for differences in behavior between base rates by
allowing separate optimistic Qapproach for high-frequency and
low-frequency mushrooms. However, the model provides no
a-priori rationale for such parameter differences.

We fit participants to three versions of the softmax model.
The SM-0 had initial values for Qapproach set to zero for all
prospects, and is most similar to the adaptive models de-
scribed by Denrell & March (2001) and Denrell (2007). The
fixed starting Q model (SM-F) allowed the initial Qapproach
to vary per participant, but set it equal for all mushrooms.
The variable starting Q model (SM-V) allowed the initial
Qapproach to be set to separate values for high-frequency and
low-frequency mushrooms. The number of parameters per
participant for each of these models is summarized in Table 1.
Model comparison We fit each of the six models to indi-
viduals’ trial-by-trial choices to maximize the likelihood of
participants’ approach/avoid decisions. We then calculated
the Bayesian Information Criterion (BIC) for each model,
which compares the quality of the model fits while penalizing
models for their number of free parameters.

Average model BIC, and the proportion of subjects best fit
by each model, are shown in Table 1. The SO-V model, which
used a probabilistic version of the optimal choice rule and
was sensitive to differences in mushroom frequency, provided
the best fit for more than half of all participants. The SO-
F model provided the best fit for roughly twenty percent of
participants, while the three softmax models and the random
model best accounted for the final quarter of participants. The
mean and median parameters for subjects best fit by the SO-V
and SO-F models are listed in Table 2.
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Figure 3: Approximate approach policy of participants for frequent,
usually-poisonous mushrooms. To construct this figure, we first de-
termined the positive-negative grid location after the final trial for
each experienced mushroom. Then for each square within each row
of the grid, we determined the proportion of participants who sam-
pled exactly that many positive outcomes who also sampled at least
that many negative ones. These proportions were shaded from green
(1.0) to red (0.0), providing an estimate of participants’ likelihood
of continuing to sample in a given grid cell. Linear regression was
used to find the best-fitting average stopping rule.

Do people take uncertainty into account? Figure 3 shows
choice behavior for the high-frequency, usually-poisonous
mushrooms, from which the most data on participants’ ap-
proach policy towards negative prospects is available (see
caption). As can be seen from comparison to the solid “# pos-
itive = # negative” line, virtually all participants continue to
sample from seemingly negative alternatives for several more
negative trials before avoiding the prospect. This is consistent
with the generally high discount parameter γ of participants
best fit by the optimal models1.

Comparison of the “# positive = # negative” line to the
best-fitting stopping rule shows that the region of uncertainty
in which participants continued to sample seemingly negative
prospects widened as the number of total experiences grew, as
predicted by the optimal model. This observation also gives
insight into why the softmax models do not provide a good fit
to the data, even with optimistic initial Q values. While ini-
tial optimism can explain perseverance through the first few
negative outcomes from a prospect, as the number of trials
increases, the agent’s optimism is washed away by experi-
ence. In other words, the point-estimate Q-values regress to
the mean of the sample.

Thus if participants were behaving like softmax agents,
their stopping rule would be expected to converge to the “#
positive = # negative” line as the number of total outcomes
increased. The fact that it instead moves farther away sug-
gests that people are not purely adaptive to past experience in
their approach decisions, and instead look towards the future
and take their uncertainty into account.

Do people take base rate into account? Among the 83
participants best fit by the SO-V model, 78 had fl < 0.25,
meaning their behavior was best fit by an optimal model
which correctly assumed the low-frequency prospects oc-
curred less often than the high-frequency ones. The mean
best-fit fl (see Table 2) is less than the true frequency of 1/10,

1While the mean γ across the two models is only 0.85, this low
value is due to a strong left skew; 47% of these participants had
γ > 0.99, and 71% had γ > 0.9.



indicating that participants actually responded to the base rate
manipulation more strongly than was optimal and undersam-
pled rare items relative to common ones. This behavior is
consistent with evidence that people underestimate the prob-
ability of rare events when they learn about them through ex-
perience rather than description (Hertwig et al., 2004).

The right panel of Figure 4 shows the choice policies of
participants best fit by SO-V, along with the difference be-
tween their policies for high- and low-frequency prospects
and the predicted difference based on SO-V model simula-
tion. As shown at bottom left, participants tended to per-
sist in sampling a negative prospect slightly longer when the
prospect occurred frequently. This trend is consistent with
participants’ low fl parameter fits, and its shape is similar to
the model simulation (bottom right).

Conclusions
In summary, participants were able to modulate their ap-
proach behavior in response to their beliefs about the future
utility of those interactions. While humans may not generally
make approach-avoid decisions in an optimal fashion, at the
very least they appear to take into account two decision vari-
ables (uncertainty and the value of information) in a way con-
sistent with optimal sequential decision making policies. This
finding is interesting in light of the large literature on the “hot
stove effect” (e.g., Biele et al., 2009; Fazio et al., 2004) and
also contrasts with findings which show that exploration be-
havior in multi-armed bandit tasks is not particularly sensitive
to uncertainty (Daw et al., 2006). Interestingly, previous stud-
ies of bandit tasks with short, finite horizons have found that
people tended to choose uncertain alternatives more when the
horizon was longer (Lee et al., 2011; Meyer & Shi, 1995).
However, the present experiment is the first, to our knowl-
edge, to show that people are sensitive to the future value of
information in a more naturalistic, indefinite-horizon environ-
ment.

Unlike the present task, in real-world environments peo-
ple are often face additional uncertainty about the category
membership of individual prospects (e.g., “Is this mushroom
the same species as another?”). While research into these
kinds of more complex approach-or-avoid problems has thus
far only been considered in machine learning (e.g. Guez et al.,
2013, 2012), we hope that the current study is a step towards
understanding how humans learn through experience-based
interactions with their environment.
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