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The tension between exploration and exploitation is a primary challenge in decision
making under uncertainty. Optimal models of choice prescribe that individuals resolve
this tension by evaluating how information gained from their choices will improve
future choices. However, research in behavioral economics and psychology has yielded
conflicting evidence about whether people consider the future during exploratory
choice, particularly in complex, uncertain environments. Adding to the empirical
evidence on this issue, we examine exploratory decision making in a novel approach-
avoid paradigm. In the first set of experiments we find that people parametrically
increase their exploration when the expected number of future encounters with a
prospect is larger. In the second we demonstrate that when the number of future
encounters is unknown, as is often the case in everyday life, people are sensitive to the
relative frequency of future encounters with a prospect. Our experiments show that
people adaptively utilize information about the future when deciding to explore, a
tendency that may shape decisions across several real-world domains.
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People are often faced with decisions among
uncertain alternatives (Mehlhorn et al., 2015;
Sutton & Barto, 1998). To behave effectively,
they must balance exploration of relatively un-
known options with exploitation of those cur-
rently believed to be most rewarding.

An optimal decision maker achieves this bal-
ance by considering the future when deciding
whether to explore. Rather than evaluate only
the immediate reward from choosing an option,
he or she also considers the degree to which
learning about the option is expected to improve
future choices, known as the value of informa-
tion (Bellman, 1957; Howard, 1966). This

means that expectations about future encounters
with an option—how soon they will occur, how
often they will occur, or if they will occur at
all—are relevant to the immediate decision to
explore something new. For example, the value
of learning about a new local café is lower for
someone who will move away in two weeks than
for someone who will move in two years, and is
higher for someone who drinks coffee frequently
than for someone who drinks it rarely.

Work in economics and marketing has ar-
gued that people make exploratory choices in a
manner well-described by forward-looking
models that match or approach optimal behav-
ior (Aguirregabiria & Mira, 2010; Ching, Er-
dem, & Keane, 2013; Erdem & Keane, 1996;
Kreps & Porteus, 1978). Although this class of
models has been used to explain consumer
choice (Erdem & Keane, 1996) and behavior
ranging from medical decision making to col-
lege enrollment (Chintagunta, Goettler, & Kim,
2012; Stange, 2012), it is difficult to determine
from field data whether people are truly for-
ward-looking in their exploration (Ching et al.,
2013). Experimental methods from behavioral
economics may more clearly identify the signa-
ture of future-sensitive exploratory behavior,
but such studies have produced mixed evidence,
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particularly in cases where the number of future
choices is not precisely known (Banks, Olson,
& Porter, 1997; Lee, Zhang, Munro, &
Steyvers, 2011; Meyer & Shi, 1995; Wilson,
Geana, White, Ludvig, & Cohen, 2014).

In the current study, we report on a series of
large, online experiments using a set of novel
approach-avoid decision-making tasks. We find
that people are sensitive to multiple forms of
expectations about the future and use these ex-
pectations to guide exploratory choice. In Ex-
periment Sequence 1 we clarify the way in
which the future number of encounters with a
prospect affects exploration, a relationship that
has been identified in past work (Lee et al.,
2011; Meyer & Shi, 1995; Wilson et al., 2014).
In Experiment Sequence 2 we extend our para-
digm to include uncertainty about the number of
future encounters, a situation common to daily
life but in which past studies have failed to
uncover future-sensitive exploration (Banks et
al., 1997). We show that when expectations
about the future are expressed as the frequency
of future encounters with a prospect, people
effectively make use of this relative frequency
information to guide their exploration.

Approach–Avoid Decision Making

We focus on a class of decision-making di-
lemmas that we term “approach-avoid” decision
making, in which a person must choose whether
to approach and sample an uncertain prospect,
or avoid the prospect in favor of a well-known
default. Many common decisions reduce to ap-
proach-avoid dilemmas. For example, a person
may choose to either try a new café or maintain
a default routine, which (depending on the in-
dividual) may mean going without coffee, mak-
ing coffee at home, or going to a well-known
café. Similarly, a consumer may choose be-
tween familiar and unfamiliar brands, and a
doctor may select between standard and novel
treatments. Critically, we focus on situations
where this decision is not “one-off,” but where
instead the decision-maker may expect to make
the same or similar decisions in the future.

This kind of scenario, in which an agent
makes a series of choices between one alterna-
tive with an uncertain reward distribution and
one with a known reward distribution, is known
in the statistics literature as a one-armed bandit
problem (Berry & Fristedt, 1979). In the formal

definition of the problem, an agent has a distri-
bution of beliefs F over the reward distribution
of the uncertain alternative (e.g., approaching
and trying the new café), and we assume with-
out loss of generality that the known alternative
(e.g., avoiding the café and skipping coffee to-
day) yields a mean reward of zero. The agent’s
goal is to maximize summed expected reward
over a sequence of choices weighed by a dis-
count sequence A ! ("1, "2, . . .), a sequence of
non-negative numbers that determine the im-
portance of rewards received from each choice.

The discount sequence represents the agent’s
expectations about and valuation of future
choices. Two types of discount sequences are of
particular interest. In the first, "m ! 1 for m !
n and "m ! 0 for m # n. This is known as a
finite horizon (Sutton & Barto, 1998), and cor-
responds to cases where a person makes a
known number of choices, n, and cares equally
about the outcomes from each. In the second,
"m ! dm$1 and d is a discount rate that is
non-negative and less than 1. This is known as
an infinite horizon (Sutton & Barto, 1998) and
corresponds to cases where a person is unsure of
the number of future choices. The progressively
decreasing weight of future choices reflects un-
certainty over whether a given future choice and
its resultant rewards will occur. (If the decision
maker intrinsically prefers earlier rewards to
later rewards (Frederick, Loewenstein, &
O’Donoghue, 2002), this time preference can
also be incorporated into the weight of future
choices.)

Within both finite and infinite horizons, we
can compare the length of two horizons. One
finite horizon is longer than another when the
number of future choices is higher, which oc-
curs when n is larger. One infinite horizon is
longer than another when the expected number
of future choices is higher, which occurs when
d is larger. In both cases, for a decision maker
who is sensitive to future choices, the weight of
future rewards relative to immediate reward will
increase as the horizon lengthens.

Effect of Horizon on Optimal Exploration

A general relationship holds between expec-
tations about the future and optimal choice: as
the horizon grows longer, the value of ap-
proaching relative to avoiding increases (or re-
mains the same in the limiting case; see Proof of
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the nondecreasing relative value of approaching
in the supplemental material available online.).
More precisely, let Vap(F, A) and Vav(F, A) be
the expected value of first choosing the uncertain
(approach) or certain (avoid) alternative, respec-
tively, and subsequently following an optimal
strategy, and let discount sequence A% be longer
than A. Then for any belief distribution F,

Vap (F, A") # Vav (F, A") $ Vap (F, A) # Vav (F, A)

The horizon has no effect on the immediate
expected reward of either action, so this change
in relative values reflects solely the increasing
value of approaching as an exploratory, infor-
mation-seeking action. When there is only a
single choice remaining or the discount rate is
zero, information about the uncertain alternative
cannot be used for consequential future choices
and thus has no value. As the horizon lengthens,
collecting information to improve future
choices becomes increasingly valuable. Be-
cause gaining information is contingent on ap-
proaching, the relative value of approaching
increases.

To illustrate this relationship and its conse-
quences, consider the example of a finite-
horizon problem where the known alternative
has a constant payoff of 0, and the uncertain
alternative produces payoffs of 1 and $1. Sup-
pose the uncertain alternative is expected to
produce the higher payoff on either 1/3 or 2/3 of
trials, with these two possibilities equally likely
a priori.

Figure 1 shows the behavior of an optimal
agent engaging in problems of this type with
horizons ranging from one to 32 choices. When
there is a single choice, the agent is indifferent
between approaching and avoiding because the
expected value of both options is zero. When
information can be used to inform at least one
future choice, the agent initially approaches,
and persists longer in approaching when the
horizon is longer. This persistence represents a
trade-off that harms the agent in some cases and
helps it in others, because it occurs both when
the prospect’s true expected value is positive
and when it is negative. But while approaching
a mostly negative prospect yields information
that corrects the agent’s beliefs and causes only
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Figure 1. Simulated behavior of an optimal agent when encountering a prospect over a finite
horizon. The top panel shows behavior when the prospect is truly 2/3 positive, and the bottom
panel shows behavior when it is truly 2/3 negative. With choice-contingent information, the
agent approaches on early trials to collect information, and approaches more persistently in
longer horizons. With full information, the agent’s behavior simply tracks the prospect’s
immediate expected reward given the observed outcomes, regardless of horizon. The model
was simulated over 10,000 task iterations. See the online article for the color version of this
figure.
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short term costs, avoiding a mostly positive
prospect yields no belief-correcting information
and inflicts long-term costs (Denrell & March,
2001). This means that as the horizon lengthens,
the relative cost of avoiding a good prospect
grows relative to that of approaching a bad one.

The role of the value of information in deter-
mining optimal behavior is made particularly
clear by comparing the standard one-armed ban-
dit problem, with choice-contingent informa-
tion, to a problem with full information where
feedback about the foregone payoff is provided
upon avoiding. Optimal behavior in this situa-
tion is plotted as a dotted gray line in Figure 1.
The expected immediate reward of approaching
is the same as in the original formulation, but
approaching no longer has additional value be-
cause information is provided regardless of
choice. As a result, horizon loses its influence
on choice and the optimal policy becomes a
myopic reward-maximizing policy that tracks
the expected immediate return from each arm.

Past Experimental Tests of Forward-
Looking Exploration

As the rational analysis in the previous sec-
tion makes clear, the expectation of future en-
counters should cause a bias toward approach-
ing an uncertain prospect, and this bias should
increase as the horizon lengthens. Past experi-
ments have yielded mixed results as to how
much human exploratory choice reflects these
two patterns.

First, some work has suggested that there is
no bias toward choosing uncertain options, and
that people are uncertainty-insensitive (Daw,
O’Doherty, Dayan, Seymour, & Dolan, 2006)
or even uncertainty-averse (Payzan-LeNestour
& Bossaerts, 2011). However, studies using
more sophisticated models (Speekenbrink &
Konstantinidis, 2014) or more constrained tasks
(Knox, Otto, Stone, & Love, 2012) report that
people do in fact tend to explore uncertain op-
tions. In addition, experiments in which partic-
ipants can make a series of purely information-
seeking actions before making a single
consequential choice show that people are will-
ing to sacrifice both time and money to reduce
uncertainty (Hertwig, Barron, Weber, & Erev,
2004; Juni, Gureckis, & Maloney, 2016).

These studies establish that uncertainty can
drive exploratory choice. A smaller number of

studies have more directly examined whether
exploration is forward-looking by testing the
effects of horizon length, particularly with finite
horizons. Although these studies have generally
found that exploration is uncertainty-sensitive,
they vary in their reported effect of horizon.
Meyer and Shi (1995) found that people chose
the uncertain option more in a one-armed bandit
task of 20 trials than in one of 5 trials, and Lee
et al. (2011) found evidence of horizon-
sensitivity among some participants in 8-trial
and 16-trial four-armed bandit tasks. Most re-
cently, Wilson et al. (2014) found that people
explored more when six trials remained than on
the final trial of a bandit task, but that explora-
tion did not increase further when 11 trials
remained. They proposed that people may have
a heuristic to explore more when future encoun-
ters are expected than when they are not.

To our knowledge, Banks et al. (1997) con-
ducted the only experiment examining the ef-
fect of infinite horizons with differing discount
rates on exploration. To manipulate discount
rate, participants in two conditions of a one-
armed bandit task were informed that the prob-
ability of the task continuing after each trial was
.8 or .9, respectively. Although participants
tended to choose the uncertain arm, there was
no difference in this tendency between the two
conditions. It might be that the small difference
in stopping probabilities along with a low-
power design contributed to this reported null
effect.

In summary, there is evidence that people
show some form of sensitivity to the future
value of information when the horizon is finite.
However, there is no existing evidence that peo-
ple are sensitive to the value of information in
an infinite-horizon setting, despite finite hori-
zons being relatively uncommon in everyday
life.

In the following experiments, we first test
whether approach behavior parametrically in-
creases with the length of a finite horizon, as
should be the case for a forward-looking deci-
sion-maker. These studies are designed to con-
firm the existing literature and test the general-
ity of those findings. We then provide a novel
test of forward-looking exploration in an infi-
nite horizon. This represents an important con-
tribution to the literature, especially given the
relevance of infinite-horizon tasks to everyday
choice behavior. In both cases we also compare
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behavior in the standard, contingent-informa-
tion task with behavior in a noncontingent, full-
information task where foregone payoffs are
revealed. These control conditions verify that
horizon-dependent behavior is in fact attribut-
able to information seeking rather than being an
idiosyncratic aspect of our experimental task.
Although several studies have described the ef-
fects of receiving foregone payoffs (Grosskopf,
Erev, & Yechiam, 2006; Yechiam & Buse-
meyer, 2006), little work has documented the
effect of anticipating foregone payoff informa-
tion on exploratory choice.

Experiment Sequence 1—Finite Horizons

We conducted two experiments to investigate
whether the length of a finite horizon affects
approach-avoid decision-making, and whether
this effect is linked to information-seeking. In
Experiment 1a, we tested whether exploration
increased parametrically with horizon when in-
formation is choice-contingent. In Experiment
1b, we replicated the results of Experiment 1a in
a setting where participants were given more
precise prior information about the environ-
ment, and also added a control condition in
which participants were given full information
regardless of choice, and in which no effect of
horizon was predicted.

Participants completed a sequence of one-
armed bandit problems in the form of a mush-
room-foraging game. They visited patches that
each contained a unique mushroom species and
had different numbers of mushrooms available,
creating different horizons. They encountered
each mushroom in the patch in turn, and chose
to either eat it to receive an uncertain payoff, or
avoid it to receive a payoff of zero. This simple
scenario mimics the formal analysis described
above. Compared to past experiments, we used
a relatively simple task, wider range of hori-
zons, and greater number of participants.

Method

Participants. Participants were recruited
via Amazon Mechanical Turk using the psiTurk
framework (Gureckis et al., 2016) and compen-
sated with a monetary payment and perfor-
mance-based bonus. Past work has shown that
data collected using AMT is comparable with
data collected in a lab setting (Crump, McDon-

nell, & Gureckis, 2013). Participants were
tested on their comprehension of the experiment
instructions, and data from participants who
failed the comprehension test more than twice
were excluded. Based on model simulations we
predicted that a clear effect of horizon would
emerge with 100 participants. For both experi-
ments we conducted a preliminary qualitative
analysis of the first 50 participants before com-
pleting participant recruitment. Final sample
sizes were 143 (3 excluded) in Experiment 1a
and 254 (22 excluded) across the two conditions
of Experiment 1b. No variables or conditions
were dropped from our analysis.

Design and procedure. Participants in
both experiments played a game based around
foraging for edible mushrooms. Mushrooms
were represented by color illustrations. Figure 2
shows examples of the task in each experiment.

Experiment 1a. Participants sequentially
encountered patches of mushrooms that con-
tained 1, 2, 4, 8, 16, or 32 exemplars of a single
species, and were informed that each species
was unique to a single patch. The goal of the
task was to eat healthy mushrooms while avoid-
ing poisonous ones. Participants were told that
species varied in their proportion of healthy
mushrooms, from “almost-always healthy” to
“almost-always poisonous.” They encountered
four patches of each length; one each of pro-
portions p(healthy) ! {.125, .375, .625, .875}.
The patches were pseudorandomly ordered.

In each patch participants first observed the
set of available mushrooms represented as a
group of empty circles. On each trial, partici-
pants chose whether to eat or avoid the next
mushroom in the patch by clicking buttons la-
beled “eat” and “avoid.” Upon eating a mush-
room, it turned green (if healthy) or red (if
poisonous) and moved to a group of healthy or
poisonous mushrooms. Upon avoiding a mush-
room, it turned gray and moved to group of
avoided mushrooms. The number of remaining
mushrooms in the patch was denoted at the top
of the screen at all times.

Participants started with a bonus of $.25.
They earned $.02 for each healthy mushroom
eaten and lost $.02 for each poisonous mush-
room eaten. They did not gain or lose money for
avoiding a mushroom. The bonus was cumula-
tive over all patches, and its value was visible
throughout the game.
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Experiment 1b. As in Experiment 1a, par-
ticipants encountered patches of mushrooms
that contained 1, 2, 4, 8, 16, or 32 exemplars.
Participants were given more precise informa-
tion that each species was either of the “mostly-
healthy” type, for which 2/3 of individuals were
healthy, or the “mostly-poisonous” type, for
which 2/3 of individuals were poisonous, and
that these two types were equally common.
These environmental statistics match those for
which the optimal policy is shown in Figure 1.
Participants encountered four patches of each
length, with two of each type.

Participants were split into two conditions. In
the contingent-information condition, the button
to avoid (labeled “don’t eat”) was described
simply as not eating the mushroom. In the full-
information condition, participants were told
that when they chose not to eat the mushroom,
they would put it into a “mushroom-testing kit”
and learn its value.

Eaten mushrooms were represented as up-
ward-pointing green triangles if healthy and
downward-pointing red triangles if poisonous.
Not-eaten mushroom were represented as gray
circles in the contingent-information condition.
In the full-information condition, they were rep-
resented as grayish-green upward-pointing or
grayish-red downward-pointing triangles, de-
pending on their healthiness.

As in Experiment 1a, participants earned a
cumulative bonus that started at $.25 and
changed in increments of $.02 as they ate
healthy or poisonous mushrooms.

Results

Participants’ probability of approaching a
mushroom on each trial within patches of each
length is shown in Figure 3. In both Experiment
1a and the contingent-information condition of
Experiment 1b, participants’ behavior resem-
bles that of the forward-looking, information-
sensitive model (see Figure 1), with a high rate
of exploration in early trials and more persistent
exploration in larger patches. In the full-
information condition of Experiment 1b, partic-
ipants appeared to begin approaching at a rate
near chance and then to modify their behavior
based on observed outcomes, similar to the my-
opic reward-maximizing policy shown in Fig-
ure 1.

To quantify the effects of horizon and other
variables on trial-by-trial behavior we used a
hierarchical Bayesian logistic regression that
allowed for individual differences among par-
ticipants (Gelman et al., 2013; see Description
of data analysis in the supplemental material
available online). We included five predictors: a
bias term (capturing overall tendencies to ap-
proach or avoid), immediate expected reward
(i.e., expected payoff from approaching on the
next trial), number of remaining trials in the patch
(horizon length), trial number within the patch
(which may have an independent effect if par-
ticipants were uncertainty- or novelty-seeking),
and the interaction between trial number and
horizon.

Figure 2. Example of the Experiment 1a task (a), and of the Experiment 1b task (b) in the
contingent-information condition. See the online article for the color version of this figure.
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We calculated expected reward by applying
Bayes’ rule using the participant’s observed
outcomes for a patch, with a uniform prior over
p(healthy) in Experiment 1a and the prior given
in the instructions in Experiment 1b. Horizon
and trial-number were log transformed because
the marginal effects of both factors are expected
to be decreasing. We rescaled expected reward
to equal $1 when p(healthy) ! 1/3 and 1 when
p(healthy) ! 2/3, and rescaled log horizon to
range from 0 (at horizon 1) to 1 (at horizon 32).
Finally, we shifted log trial-number to have zero
mean so that the horizon coefficient could be
interpreted as an average effect across all trials.

The model posterior was estimated for each
experiment and condition using the Stan mod-
eling language (Stan Development Team,
2015). Posterior estimates of the population-
level parameters are presented in Figure 4. Sim-
ulated data from the model posteriors confirmed
a close match to the key features of the data (see
Figure S1 in the supplemental material avail-
able online).

Participants were positively sensitive to ex-
pected reward across all three scenarios. The

model posteriors confirm that behavior was
similar in Experiment 1a and the contingent-
information condition of Experiment 1b. In both
scenarios, participants were highly exploratory
early on; the 95% posterior predictive intervals
for first-trial approach proportion were [.920,
.937] and [.894, .916], respectively. Participants
became less likely to approach over the course
of a patch, as shown by a negative effect of trial
number. This decrease in exploration likely re-
sults from the decreased uncertainty about and
novelty of later mushrooms in a patch.

Critically, as shown in Figure 4, there was a
positive population-level effect of horizon in
both contingent-information scenarios, suggest-
ing that people were not simply uncertainty-
seeking but used a forward-looking strategy that
tracked the value of information. This sensitiv-
ity to horizon also held broadly at the individual
level. In Experiment 1a, the posterior mean
effect of horizon was above zero for 81% of
participants, and the 95% posterior interval for
the effect of horizon was entirely above zero for
51% of participants. In the contingent-informa-
tion condition of Experiment 1b, the posterior

Exp1a Exp1b contingent Exp1b full
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Figure 3. Probability of approaching a mushroom on each encounter within a patch for each
finite-horizon experiment and condition. Top panels show participant behavior for patches
where p(healthy) was .625 or .875 (Exp. 1a), or .67 (Exp. 1b), and bottom panels show
behavior for patches where p(healthy) was .125 or .375 (Exp. 1a), or .33 (Exp. 1b). Error bars
show standard error of the mean. In order to focus on comparisons among patch lengths, the
x axis is compressed after Trial 16 and the change in p(approach) from Trial 16 to Trial 32
is shown as a dotted line. Participants tended to approach early on and to have higher
p(approach) for longer horizons in Experiment 1a and in the contingent-information condition
of Experiment 1b, but not in the full-information condition of Experiment 1b. See the online
article for the color version of this figure.
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mean was above zero for 79% of participants,
and the posterior interval was entirely above
zero for 58% of participants. There was also a
negative interaction between horizon and trial,
such that the effect of horizon decreased in later
trials. This may reflect that further into a patch
participants were confident about the healthi-
ness of the species, reducing the potential value
of information.

Behavior in the full-information condition of
Experiment 1b was markedly different from
behavior in the contingent-information scenar-
ios. Participants were roughly indifferent be-
tween approaching and avoiding on the first
trial, with a 95% posterior predictive interval of
[.500, .538]. There was no main effect of trial
number or of horizon, and the 95% posterior
interval for horizon was completely below those
of the two contingent-information scenarios.
We also observed that participants started ap-
proaching less in the last few trials of mostly
healthy patches and more in the last few trials of
mostly poisonous patches. This effect is not

well-captured by our model and is contrary to
our predictions, but is distinct from the infor-
mation-related horizon effect in that it tends
toward increased approach when the horizon is
short and expected reward is negative. We hy-
pothesize that this effect may be an instance of
the gambler’s fallacy, with participants expect-
ing that a string of good outcomes would be
balanced out by bad ones and vice versa (Tver-
sky & Kahneman, 1971).

Recent work raises the question of whether
the effect of horizon is parametric and smoothly
increasing, or categorical with two distinct lev-
els for situations with and without future en-
counters (Wilson et al., 2014). Although our
main analysis assumed that the effect of horizon
was logarithmic, we tested this assumption with
an expanded model in which each experienced
horizon, from 1 to 32, had a unique population-
level parameter that was allowed to vary freely
(see Description of data analysis in the supple-
mental material available online). We found
that in both contingent-information scenarios

Exp1a Exp1b cont. Exp1b full

Exp2a Exp2b cont. Exp2b full
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Figure 4. Posterior estimates of the population-level effects of five predictors on behavior,
estimated using a hierarchical Bayesian logistic regression of participants’ choices in all
experiments. The top panels show results for finite-horizon experiments, and the bottom
panels show results for infinite-horizon experiments. Thick lines show posterior means, and
colored intervals show 95% posterior intervals. As predicted by a forward-looking model,
participants exhibited a positive effect of horizon in all four contingent-information scenarios,
but not in the two full-information scenarios. See the online article for the color version of this
figure.
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these values increased at a roughly logarithmic
rate, supporting our supposition that the effect
of horizon increases parametrically but with a
decreasing marginal effect (see Figure S2 in the
supplemental material available online).

Finally, although participants did modulate
their exploration based on the length of the
horizon, they also appeared to have a general
bias toward information seeking. We tested this
by comparing the final trials of the two condi-
tions of Experiment 1b, where the true value of
information was zero but participants could still
choose to make an information-seeking choice
in the contingent-information condition. A re-
gression on these final trials reveals that, con-
trolling for expected reward, participants in the
contingent-information condition were more
likely to approach, z ! 7.82, p & .001. This bias
could reflect a heuristic to collect information
even when not clearly useful, for example in
case the species was encountered again (al-
though participants were informed it would not
be) or the information could improve prior
knowledge about future species (although the
prior over p(healthy) was given).

Infinite Horizons and Prospect Frequency

In Experiments 1a and 1b, as in most previ-
ous studies of task horizon and exploration (Lee
et al., 2011; Meyer & Shi, 1995; Wilson et al.,
2014), participants knew the exact number of
times they would encounter a prospect in the
future. This kind of finite horizon, though, is not
representative of many of the decisions faced in
everyday life. Often, people do not know how
many times they will encounter a prospect. For
example, there is no precise limit on the number
of times someone might have the opportunity to
visit a local café. This type of situation is more
naturally formalized as an infinite-horizon prob-
lem.

Banks et al. (1997) attempted to induce infi-
nite horizons with different discount rates in a
one-armed bandit task by informing some par-
ticipants that the task had a .9 probability of
continuing after each trial, and others that the
task had a .8 probability of continuing. They
found that this manipulation did not affect par-
ticipants’ exploration, though this null result
may have been a result of low power. In addi-
tion, although a probabilistic experiment length
is an effective way to create uncertainty about

the horizon (Camerer & Weigelt, 1996), explicit
information about ending probabilities may feel
artificial to participants and be difficult to inte-
grate into decision-making strategies.

A more natural and common way in which
individuals face differing effective discount
rates is through the differing frequencies of
prospects within a wider environment. Some
types of products are purchased more often than
others, and likewise some social situations are
encountered more than others. Intuitively, if the
length of the environment is uncertain (e.g.,
length of time living in a city, length of life),
and encounters with one prospect are less fre-
quent than encounters with another, then a per-
son should expect more future encounters with
the frequent prospect and value information
about that prospect more highly.

We can formalize this idea by considering an
agent facing a contextual one-armed bandit
problem. The agent has a single infinite-horizon
discount sequence A with discount rate d, but
rather than always facing the same uncertain
alternative, on each trial it encounters one of k
independent uncertain alternatives (i.e., the con-
text for that trial). Each alternative has its own
starting belief distribution Fi, and each is en-
countered with a known frequency fi, such that

!i%1
k

fi % 1. For example, the agent may have
to decide whether to buy an espresso each
morning after observing which of k baristas
(with potentially varying skill) are working at
the café. We assume the agent knows how fre-
quently each barista works at the café, though
this could also be learned from experience.

Since the alternatives are independent, this
situation can be reduced to k independent one-
armed bandit problems by considering only the
sequence of encounters with the kth alternative.
However, the timing, and thus the discounted
weight, of future encounters with each bandit
will depend on its frequency, causing future
encounters with rare prospects to tend to receive
lower weight. Although the exact discount se-
quence for a given prospect is unknown in ad-
vance, these uncertain sequences can be re-
placed with their expected values (Berry &
Fristedt, 1985), resulting in a set of k indepen-
dent one-armed bandits with effective discount
rates dk.

Figure 5 shows the behavior of an optimal
agent in an environment with an infinite hori-
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zon, for prospects that have differing frequen-
cies. To explore optimally, the agent ap-
proaches more when the prospect is frequent,
just as it does when the finite horizon is longer
(see Figure 1).

Experiment Sequence 2—Infinite Horizons

In Experiment Sequence 2, we tested whether
participants display a sensitivity to prospect fre-
quency. Although there is a large literature sur-
rounding the effects of rare and common out-
comes on decision strategies (e.g., Hertwig et
al., 2004), to our knowledge there are few stud-
ies that examine the effect of rare and common
prospects—that is, of rarely and commonly
faced decision contexts. In Experiment 2a, par-
ticipants performed a contingent-information
task in which the horizon was unknown. In
Experiment 2b, we replicated the results of Ex-
periment 2a in a similar task with more precise
information about the possible values of pros-
pects and the distribution of possible horizons,

and also added a full-information control con-
dition.

Participants played a mushroom-foraging
game that instantiated the kind of contextual
one-armed bandit problem described above.
Participants played through a series of habitats
that each had four unique mushroom species,
any one of which could appear on a given trial.
They were trained on the relative frequency of
the species at the beginning of the task, and then
made a series of approach-avoid decisions. In
Experiment 2a, participants were not told the
length of the habitats. In Experiment 2b, we
incorporated a probabilistic habitat-ending
mechanism so that participants had explicit
prior information about the uncertainty over the
horizon.

Method

Participants. Participants were recruited
via Amazon Mechanical Turk using the psiTurk
framework and compensated with a monetary
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Figure 5. Simulated behavior of an optimal agent with a base discount rate of .99 when
encountering prospects with differing frequencies of occurrence over an infinite horizon. Each
prospect is known to either yield a payoff of %1 with probability 2/3 or a payoff of $1 with
probability 2/3, and the opposite payoff otherwise. The top panel shows behavior when the
prospect is truly 2/3 positive, and the bottom panel shows behavior when it is truly 2/3
negative. With choice-contingent information, the agent approaches to collect information,
and approaches more persistently when the prospect is more frequent. With full information,
the agent’s behavior simply tracks the prospect’s expected value given the observed out-
comes, regardless of frequency. The model was simulated over 10,000 task iterations. See the
online article for the color version of this figure.
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payment and performance-based bonus. Data
from participants who failed the preexperiment
comprehension test more than twice were ex-
cluded. For both experiments we conducted a
qualitative analysis of the first 50 participants
before completing data collection. Sample sizes
were 152 (3 excluded) in Experiment 2a, and
159 (5 excluded) across the two conditions of
Experiment 2b. No variables or conditions were
dropped from our analysis.

Design and procedure. Participants in
both experiments played a game based around
foraging for healthy mushrooms. Mushrooms
were represented by color illustrations. The ex-
periments were divided into subtasks called
“habitats” (e.g., “New England Forest,” “Ama-
zonian Rain-forest”). Each habitat contained
four unique mushroom species, two of which
occurred with frequency 4/10 and two of which
occurred with frequency 1/10. Within each hab-
itat, the game was broken into two phases. In
the first phase, participants observed a large,
representative sample of the mushrooms in the
habitat. Mushrooms encountered in this sample
were depicted as circles that appeared without
participant input. Once the entire sample had
been shown, the species were highlighted one at
a time and participants submitted a “field re-
port” by answering questions of the form “If
you saw 10 mushrooms on your hike back
through the [Habitat Name], how many would
you expect to be from the species [Species
Name]?” This ensured that participants noticed
and encoded the relative frequency of each spe-

cies. In the second phase, participants played a
game similar to those in Experiment Sequence
1, but where the species encountered on any
trial was randomly interleaved with other spe-
cies based on the underlying frequencies. The
net result was that the number of trials between
successive encounters tended to be greater for
infrequent species than for frequent species.
Figure 6 shows examples of the decision-
making phase of each experiment.

Experiment 2a. Participants completed two
habitats. Each habitat had one rare and one
common species that were healthy with propor-
tion .7 and one rare and one common species
that were healthy with proportion .3. Partici-
pants were not informed of the exact possible
p(healthy) values. In each trial of the decision-
making phase, one of the four species was high-
lighted (with frequencies matching those
learned in the observation phase) and partici-
pants chose whether to eat or avoid a mushroom
from that species. Healthy and poisonous eaten
mushrooms were represented as green and red
dots on a “histogram” of observations, whereas
avoided mushrooms were represented as gray
dots along with the samples from the observa-
tion phase. The decision-making phase of each
habitat lasted 120 trials, but participants were
not informed of when the habitat would end.
Participants started with a bonus of $.50, and
gained and lost money in increments of $.05.
Potential bonuses were earned separately for the
two habitats, and one of the two bonuses was

Figure 6. Example of the Experiment 2a task (a), and of the Experiment 2b task (b) in the
full-information condition. See the online article for the color version of this figure.
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randomly awarded at the conclusion of the ex-
periment.

Experiment 2b. Participants completed
four habitats. The task parameters and game
interface were designed to be similar to that in
Experiment 1b. Participants were informed that
mushroom species could be either 2/3 healthy or
2/3 poisonous, and that these types were equally
common. Mostly healthy and mostly poisonous
species were pseudorandomly distributed across
habitats, but each habitat contained at least one
healthy species to maintain engagement (this
was not revealed to participants in the instruc-
tions). The presentation of mushrooms was sim-
ilar to Experiment 1b, and mushrooms from the
observation phase were displayed separately
from those from the decision-making phase.
Participants were randomly assigned to either a
contingent-information or a full-information
condition. Upon making a decision a new circle
or triangle appeared and was added to the ap-
propriate group for that species as explained for
Experiment 1b.

Rather than giving participants no informa-
tion about habitat length, as in Experiment 2a,
participants were informed that after each trial
of the decision-making task there was a constant
small probability of leaving the habitat and con-
tinuing to the next one. This probability was
illustrated by a spinner with a small yellow
wedge covering 1.5% of its area. The spinner
was spun after each trial, and the habitat ended
when the black arrow landed on the wedge. The
habitat lengths were in fact predetermined to be
40, 60, 80, and 100 trials, randomly ordered.
The bonus started at $.25 and changed in incre-
ments of $.02, and was cumulative over the four
habitats.

Results

When asked in the “field report” how many
times out of 10 each species would be encoun-
tered in the future, participants in Experiment
2a reported 4.7 for frequent species and 1.6 for
rare species, whereas participants in Experiment
2b reported 4.8 for frequent species and 1.6 for
rare species, on average. The target values
based on the empirical frequencies were 4.0 and
1.0. Furthermore, participants gave the exact
correct response 62% of the time, suggesting
frequency information was encoded accurately,

and critically that the difference between fre-
quent and rare prospects was encoded.

Results of the decision-making phase are
shown in Figure 7. Visual inspection shows a
high initial exploration rate and greater ap-
proach probability for high-frequency species in
Experiment 2a and the contingent-information
condition of Experiment 2b, similar to the
choices of the optimal policy (see Figure 5). In
the full-information condition of Experiment
2b, people appeared to behave in a myopic
reward-maximizing manner.

We analyzed the choice data using the hier-
archical Bayesian logistic regression model in-
troduced in Experiment Sequence 1, and predic-
tors were calculated and rescaled as described
above. Horizon was coded as 1 for high-
frequency species and 0 for low-frequency spe-
cies, and trial number represented the encounter
number within the species encountered on that
trial (rather than the trial number within the
habitat). The posterior estimates of the popula-
tion-level coefficients are presented in Figure 4,
and posterior simulations from the model again
confirmed a good qualitative match to the data
(see Figure S3 in the supplemental material
available online).

Participants were positively sensitive to ex-
pected reward across all three scenarios. In the
two contingent-information scenarios, partici-
pants were highly exploratory early on, with
95% posterior predictive intervals for first-trial
approach proportion of [.935, .960] and [.905,
.936], and became less exploratory in later en-
counters.

Participants were also more exploratory in
encounters with high-frequency species, sup-
porting the hypothesis that they engaged in a
forward-looking evaluation of the value of in-
formation. This effect of frequency was exhib-
ited by a large portion of the participant popu-
lation. In Experiment 2a, the posterior mean of
the horizon parameter was greater than zero for
96% of participants, and the 95% posterior in-
terval was entirely above zero for 64% of par-
ticipants. In the contingent-information condi-
tion of Experiment 2b, the posterior mean was
above zero for 86% of participants and the
posterior interval was entirely above zero for
47% of participants. Participants did not exhibit
the negative interaction between horizon and
trial observed in Experiment Sequence 1, and in
fact there was a small positive interaction in
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Experiment 2a. Further work is needed to in-
vestigate how task horizon interacts with past
encounters and uncertainty.

In the full-information scenario, expected re-
ward appeared to be the primary driver of be-
havior. The 95% posterior predictive interval
for first-trial approach was [.450, .509], and
there was no effect of horizon or encounter
number. Furthermore, the 95% posterior inter-
val for the effect of horizon was fully below
those for the two contingent-information sce-
narios.

These findings appear to show a clear effect
of frequency on approach behavior when infor-
mation is choice-contingent. However, one al-
ternative possibility is that participants simply
were exploratory in the early trials of each hab-
itat (rather than the early trials of each species),
and became less exploratory later on, regardless
of what species was encountered on a given
trial. Because the nth encounter with a frequent
species will tend to come earlier in the habitat
than the nth encounter with an infrequent spe-
cies, this could cause participants to falsely ap-
pear frequency-sensitive. We tested this expla-

nation by fitting a logistic regression model to
the first encounter with each mushroom species,
using species frequency and the trial in the
habitat on which the species was encountered to
predict choice. There was a large effect of fre-
quency on p(approach) in both contingent-
information scenarios, z ! 2.58, p ! .01 and
z ! 3.96, p & .001, but no effect of trial in
habitat, z ! .71, p # .250 and z ! 0.06, p #
.250. Therefore, trial in habitat appears insuffi-
cient to explain our full pattern of results.

Discussion

Exploratory decisions are a constant feature
of life in an uncertain and changing world, and
people’s choices about what to explore often
determine their later behavior, preferences, and
beliefs. Although work in applied fields has
posited that people’s decisions reflect the future
value of exploring various prospects (Ching et
al., 2013), experimental work has left unclear
whether this is actually the case, particularly in
naturalistic environments with an uncertain or
“infinite” horizon. Across four experiments, we
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Figure 7. Probability of approaching a mushroom on each encounter within a patch for each
infinite-horizon experiment and condition. Top panels show participant behavior for species
where p(healthy) was .7 (Exp. 2a) or .67 (Exp. 2b), and bottom panels show behavior for
patches where p(healthy) was .3 (Exp. 2a) or .33 (Exp. 2b). Error bars show standard error of
the mean; error bars are wider on later trials in Experiment 2b because some habitats ended
earlier than others. In order to focus on comparisons between patch frequencies, the x axis is
compressed after Trial 20 and the change in p(approach) from Trial 20 to the final trial with
a species is shown as a dotted line. Participants tended to approach early on and to have higher
p(approach) for longer horizons in Experiment 2a and in the contingent-information condition
of Experiment 2b, but not in the full-information condition of Experiment 2b. See the online
article for the color version of this figure.
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found that people are indeed sensitive to the
future value of information when making ex-
ploratory decisions. Participants increased their
exploration as finite task horizon increased, and
were sensitive not just to definite, discrete ho-
rizons but also to differences in prospect fre-
quency when the horizon was uncertain.

These results show that people can use ex-
ploratory strategies that consider the future, but
the mechanisms underlying their behavior re-
main unclear. Optimal information seeking re-
quires complex dynamic programming calcula-
tions over possible future outcomes that seem
implausible for humans to compute. People may
perform simpler computations, such as simulat-
ing a few possible chains of future outcomes
(Vul, Goodman, Griffiths, & Tenenbaum,
2014), or considering possible outcomes only
one or two choices ahead (Zhang & Yu, 2013).
Alternatively, they may use simple heuristics
(e.g., Seale & Rapoport, 2000) or exploration
bonuses (e.g., Daw et al., 2006) that are sensi-
tive to the horizon. Finally, people may mix
more and less complex exploration strategies,
and the degree of forward-looking thinking may
vary across individuals and situations as has
been found in other decisions that involve future
rewards (Frederick et al., 2002). Although dis-
tinguishing these potential mechanisms of for-
ward-looking exploration will be difficult, many
interesting avenues of research toward this goal
are open. These include studying exploratory
choice under cognitive load, investigating the
developmental trajectory of forward-looking
exploration, and testing the degree to which the
exploration-enhancing effect of a long horizon
is altered by the context of recently experienced
horizons.

Regardless of the mechanisms driving their
choices, our finding that people use frequency
as a cue to the value of information may offer a
better understanding of exploratory behavior in
many domains. In our experiments, people were
more likely to eat uncertain mushrooms from a
species they expected to encounter frequently.
If this pattern generalizes widely, then consum-
ers may be more likely to purchase a new brand
when shopping for commonly-purchased goods
(Ching et al., 2013), and doctors may be more
likely to prescribe a new drug for commonly-
treated diseases (Chintagunta et al., 2012). Gen-
erally, frequency-dependent exploration should
allow individuals to make better exploratory

decisions compared to non-forward-looking
agents (Denrell & March, 2001).

Interestingly, however, this individually ra-
tional behavior might amplify societal biases.
Research on fads and social influence has de-
scribed how self-reinforcing cycles of popular-
ity can develop in consumer and cultural set-
tings (Bikhchandani, Hirshleifer, & Welch,
1992; Denrell & Le Mens, 2007). Frequency-
dependent exploration may strengthen these cy-
cles, as items that are popular and thus common
become more valuable to learn about than those
that are unpopular and rare.

Similarly, work on social attitude formation
has suggested that one cause of negative atti-
tudes toward outgroups is that outgroup mem-
bers are more easily avoided than ingroup mem-
bers, allowing false beliefs about them to persist
(Allport, 1979; Denrell, 2005). To the extent
that outgroup members are rare in daily life, we
predict this tendency to be exacerbated by fre-
quency-dependent exploration. Fortunately, in-
terventions that increase contact with an out-
group may erode prejudice (Shook & Fazio,
2008), possibly in part by increasing the future
rewards of interacting and learning. To specu-
late, it is possible that even an intervention that
simply increased a person’s belief that outgroup
members are a frequent part of their social en-
vironment might increase later exploratory in-
teractions. Thus, although forward-looking ex-
ploration may cause biases, it might also be
leveraged as a tool to reverse them.
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