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Abstract

The blood-oxygen-level-dependent (BOLD) signal measured in functional magnetic resonance 

imaging (fMRI) experiments is generally regarded as sluggish and poorly suited for probing neural 

function at the rapid timescales involved in sentence comprehension. However, recent studies have 

shown the value of acquiring data with very short repetition times (TRs), not merely in terms of 

improvements in contrast to noise ratio (CNR) through averaging, but also in terms of additional 

fine-grained temporal information. Using multiband-accelerated fMRI, we achieved whole-brain 

scans at 3-mm resolution with a TR of just 500 ms at both 3T and 7T field strengths. By taking 

advantage of word timing information, we found that word decoding accuracy across two separate 

sets of scan sessions improved significantly, with better overall performance at 7T than at 3T. The 

effect of TR was also investigated; we found that substantial word timing information can be 

extracted using fast TRs, with diminishing benefits beyond TRs of 1000 ms.
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Introduction

The blood-oxygen-level-dependent (BOLD) signal measured in functional magnetic 

resonance imaging (fMRI) experiments is generally regarded as sluggish and poorly suited 

for probing neural function at the faster timescales where sentence processing and lexical 

semantics come into play. As such, many fMRI studies on sentence comprehension utilize a 

relatively long repetition time (TR, ~2000 ms) and limit experiments to single word 

presentation per trial (Correia et al., 2014; Flegal, Marin-Gutierrez, Ragland, & Ranganath, 

2014; Meltzer-Asscher, Mack, Barbieri, & Thompson, 2015). The majority of studies that do 

present full sentences typically only model sentence onsets, assuming all words within a 

sentence are read simultaneously and/or processed throughout the trial (Berken et al., 2015; 

He et al., 2015; Moisala et al., 2015; Vitello, Warren, Devlin, & Rodd, 2014). While such a 

model is expedient, it does not fully capture, for example, syntactic differences between 

sentences, which involve subtle word order variations (Dapretto & Bookheimer, 1999; Wu, 

Vissiennon, Friederici, & Brauer, 2016). Modelling of individual words and their timing 

within sentences should enable more in-depth investigations of such dynamic sentence 

processing and uncover additional brain regions performing sentence computations of 

interest. With the recent advancements in multiband (MB) acceleration allowing for sub-

second whole-brain imaging (Feinberg et al., 2010; Moeller et al., 2010), determining how 

much word timing information is available in the BOLD response becomes exceedingly 

relevant.

Early work on the effect of repetition time (TR) on fMRI experimental paradigms found that 

shorter TRs (on the order of 1000 ms) provide optimal statistical power (Constable & 

Spencer, 2001). Unfortunately, few studies to date have been able to take advantage of such 

short TRs since they typically require scanning only a fraction of the brain (for example, see 

Kay, Naselaris, Prenger, & Gallant, 2008). However, more recent studies have begun to show 

the value of acquiring slice-accelerated, whole-brain data with very short TRs. In addition to 

expected gains in BOLD contrast to noise ratio (CNR) through effective averaging of 

additional time points (Feinberg et al., 2010; Smith et al., 2013; Xu et al., 2013) and 

increasing benefits of physiological denoising (Tong & Frederick, 2014), use of accelerated 

imaging has also been shown to provide additional fine-grain temporal information (Chang 

et al., 2013; Chen et al., 2015).

While the delay between stimulus onset and peak BOLD response can be quite long 

(Hulvershorn, Bloy, Gualtieri, Leigh, & Elliott, 2005; Lee, Glover, & Meyer, 1995), the 

BOLD response for a particular brain region is impressively time invariant and temporally 

precise. Shifts in the temporal profile of the BOLD response corresponding to stimulus shifts 

on the order of 100 ms have been reliably detected using sub-second TRs (Chang et al., 

2013; Menon, Luknowsky, & Gati, 1998). When applied to visual stimulation paradigms, 

Chen et al. (2015) showed that slice acceleration factors between 8 and 12 (corresponding to 

TRs between 300 and 600 ms) were optimal in terms of CNR and decodable information (as 

measured by movie frame classification accuracy). These results suggest that the timing of 

individual words within a sentence is recoverable from the BOLD response, especially with 

the shorter TRs achievable with multiband imaging.
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Perhaps the primary concern regarding recovery of word timing information from sentences 

is the nonlinearity of the BOLD response elicited by multiple stimuli (e.g., words) presented 

in quick succession (Mukamel, Harel, Hendler, & Malach, 2004; Ogawa et al., 2000; Zhang, 

Zhu, & Chen, 2008). Fortunately, it has been shown that words elicit very different patterns 

of BOLD activity depending on the semantics of the individual words (Mitchell et al., 2008). 

Therefore, for simple sentences where each semantically rich word occurs only once per 

sentence (as in the study presented here), higher order brain regions involved in semantic 

processing should not be strongly impacted by this nonlinearity. Furthermore, use of higher 

field strength (e.g., 7T) also greatly reduces non-linearities in the BOLD response (Pfeuffer, 

McCullough, Van de Moortele, Ugurbil, & Hu, 2003), potentially due to the relatively larger 

contribution from the microvasculature at higher field. Thus, in addition to the gains in CNR 

expected from higher field strength (Ugurbil et al., 2013; Ugurbil, 2014; Vaughan et al., 

2001), improvements in BOLD linearity should further enhance extraction of word timing 

information.

Here, we investigate how much word-specific timing information is recoverable from the 

BOLD signal in a multi-modal sentence reading experiment. By pushing the limits of slice-

accelerated (also known as multiband) fMRI, we are able to achieve whole-brain scans at 3-

mm resolution with a TR of just 500 ms. Importantly, this enables us to sample close to the 

reading rate of ~300 ms per word in an experiment where 240 unique sentences (constructed 

from a set of 261 words) were randomly presented to subjects at a rate of roughly one 

sentence every 5 s. To evaluate our data for individual word timing information, we tested 

two general linear model (GLM) models of the sentence data (schematics shown in Figure 

1). The more traditional static word model includes a regressor for each of the 261 words 

and assumes that all words of a given sentence are read simultaneously at trial onset and 

processed throughout the trial. The dynamic word model is the same as the static model but 

with the timing of individual words preserved. Importantly, both models use an identical 

number of regressors. We used a metric of BOLD variance explained (e.g., F-value) and 

word pair classification accuracy (where the probability of each true word is contrasted with 

the probability of each possible word) as measures of model performance at various TRs 

(500 ms, 1000 ms, and 2000 ms) and field strengths (3T and 7T). The degree to which the 

dynamic model outperforms the static model reflects the amount of word timing information 

available in the BOLD response.

Method

Four subjects (two male) provided informed consent and participated in a multimodal 

reading study where sentences were delivered both visually and aurally. All experimental 

protocols were approved by the Committee for the Protection of Human Subjects at the 

University of Minnesota as well as the United States Air Force Research Laboratory 

(AFRL).

Stimulus paradigm

Stimuli consisted of the 240 sentences provided by the Intelligence Advanced Research 

Projects Activity (IARPA) for the Knowledge Representation in Neural Systems (KRNS) 
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programme (Glasgow, Roos, Haufler, Chevillet, & Wolmetz, 2016). Some example 

sentences were as follows: “The driver wanted cold tea.”, “The tired patient slept in the dark 

hospital.”, and “The bird was red.”. Subjects were instructed to think about the meaning of 

each sentence. Behavioural compliance was verified by means of probe questions where 

subjects must make a yes/no button-press response to the question regarding the previously 

presented sentence. Probe questions occurred randomly four times per ~5-min run, and 

subjects were provided score feedback at the end of each run. All 240 sentences were 

presented in pseudo-random order within five runs of 54 trials (including 4 probe trials and 2 

fixation trials) with each trial lasting 5 seconds. Five sessions, with 10 runs (2 repeats per 

sentence) each, were acquired per subject. Each run began and ended with 10 s of fixation.

All stimuli were visually presented in the centre of a screen spanning 1–3 lines of text. 

Sentences were converted to audio via the txt2mp3mac software and were simultaneously 

presented to subjects at a rate of approximately 300 ms per word via Sensimetric earbuds, 

which also provided acoustic sound protection. The duration of visual presentation was 

matched to the audio (maximum duration was no greater than 3 s, which was then followed 

by a fixation cross) to ensure consistency of when individual words were read. Initial pilot 

studies confirmed that this multimodal duration-matched stimulus presentation resulted in 

the strongest/most reliable BOLD responses (when compared to text or sound alone or text 

plus sound where the text was left on for three seconds regardless of auditory stimulus 

duration). The font face and voice varied randomly from one run to the next to reduce the 

risk that decoding analyses would pick up on low-level perceptual details of the stimuli. 

Stimuli were presented via an iMac computer using Matlab Psychtoolbox, and the display 

screen was projected from behind the MRI scanner.

Data acquisition

Data were acquired from Siemens 3T Prisma and 7T Magnetom scanners using standard 32-

channel receive array coils. The fMRI protocols were separately optimized at each scanner 

for CNR per unit time while maintaining reasonable spatial resolution (~3 mm) and a TR of 

500 ms. Given that the optimal echo times (TEs) at 7T are shorter (19 ms versus 38 ms), we 

are able to acquire more slices per unit time and thus use a slightly lower multiband factor at 

7T (6 versus 7 at 3T). The number of slices was set to the smallest multiple of MB that 

would cover >130 mm in the slice direction to ensure whole-brain coverage for our subjects 

(54 versus 49 slices at 3T). The slice thickness at 7T was made slightly thinner (2.5 mm 

versus 3.0 mm at 3T) to minimize B0 dropout, while also offsetting the relatively stronger 

T2* blurring along the phase encode direction, and to utilize the greater time efficiency at 

7T. The in-plane field of view (FOV) was 210 mm, and Ernst angle (40 versus 47 at 3T) was 

used for both protocols. FOV shift factor of 3 was used to minimize slice-accelerated 

leakage and g-factors (Setsompop et al., 2012). Two of the subjects completed the entire 

experiment at both 3T and 7T, with sessions at each field strength interleaved across days. 

One of the 3T-only subjects was removed from analysis due to poor behavioural 

performance (session average of 50% accuracy or less on behavioural probe questions).
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Data processing

fMRI data were preprocessed using FSL (www.fmrib.ox.ac.uk/fsl/) for motion correction 

and co-registration across sessions within subjects. No spatial or temporal smoothing was 

applied. Custom Matlab algorithms were used to perform regularized linear regression 

(Nishimoto et al., 2011) on individual voxels for both the static and dynamic word models 

after convolution with a canonical haemodynamic response function (HRF; Kay, 2014). For 

simplicity, word onset times in the dynamic word model were rounded to the nearest TR. 

Run-specific regressors for drift were modelled by zero-, first-, second-, and third-degree 

nuisance polynomials (Kay, David, Prenger, Hansen, & Gallant, 2008).

Model performance was evaluated by the F-value (Freedman, 2009), which is defined as 

variance explained by the model divided by variance of the residuals. The models were 

estimated on a per session basis to reduce computational memory requirements and 

produced one t-value estimate (beta divided by beta error; Freedman, 2009) per word per 

voxel. For each of the 261 words, 260 pairwise word classifications were performed using 

the correlation similarity metric between the training set t-values for the word A and testing 

set t-values for the words A and B. The 10,000 voxels with highest F-values in the training 

set were selected for calculating these correlations. The mean performance across all 261 × 

260 classifications is reported. To avoid overfitting, voxel selection F-values and training t-
values were based on the average values across two sessions. The average t-values across the 

remaining three sessions were used as the classification test set. This set-up allowed for 10 

unique permutations of train and test sets, which were then used to estimate standard error of 

the mean (SEM) error bars. To evaluate the effect of TR on the above metrics, the 

preprocessed (motion corrected and co-registered) data as well as the post HRF convolved 

design matrices were temporally down-sampled after 2 and 4 TR window averaging to 

achieve effective TRs of 1000 ms and 2000 ms. Window averaging was used to emulate (a) 

the CNR advantage analogous to the CNR advantage that one could achieve at slower TRs 

(due to larger Ernst flip angle and lower multiband acceleration related g-factor noise) and 

(b) the increased chance for similar temporal blurring due to the traditional interleaved slice 

acquisition order where adjacent slices are acquired roughly half a TR apart in time. While 

window averaging also helps to low-pass filter the time series to some degree, it is noted that 

more elegant low-pass filters could be used to further reduce aliasing of signals above the 

Nyquist rate (e.g., via Matlab’s decimation function). The impact of these various filters on 

BOLD temporal frequency information should be investigated in future studies.

Results

Figure 2 shows the mean difference between dynamic model F-values and static model F-

values for a representative subject at 3T (thresholded for differences greater than 0.25, p < .

05). Improvements in F-values can be seen in language processing areas such as the superior 

temporal gyrus (including primary auditory cortex), ventrolateral extreme of the central 

sulcus (Brodmann area 43), Broca’s area, frontal eye fields, and portions of visual cortex. 

Negative differences were observed; however, they tended to be smaller and towards the 

edge of the brain, suggesting that simpler models that only account for the onset of each trial 

are sensitive to potentially non-interesting variance due to trial onset arousal/motion (not 
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shown). These improvements are summarized in Figure 3 as the ratio of dynamic and static 

model testing set F-values (averaged across voxels having a ratio of at least 1.1, i.e., 10% 

increase, and a voxel cluster size of at least 10 contiguous voxels as determined from the 

separate training data set). On average across the three subjects and two field strengths, the 

use of the dynamic model increased F-values (i.e., explained variance) by a factor of ~1.2 or 

20% relative to when the static model was used, which is significantly greater than a chance 

factor of 1 (t-test, df = 4, p < .0001). Down-sampling to an effective TR of 1000 ms 

highlighted even more the advantages of the dynamic model (paired t-test, df = 4, p < .01). 

However, further down-sampling to an effective TR of 2000 ms significantly reduced the 

benefit of the dynamic model relative to the 1000 ms TR (paired t-test, df = 4, p < .05). 

Ratio of dynamic to static model F-values, as opposed to raw F-values, were used here since 

the F-statistic is weighted by the number of degrees of freedom. Without additional special 

consideration, the F-statistic yields smaller standard-error-of-the-mean estimates and 

inflated F-values in datasets with shorter TRs/more time-points. To avoid this confound, we 

decided to use classification performance to evaluate differences in TR.

Figure 4A shows the classification performance of both the static and the dynamic word 

models. While both models performed above chance (t-test, df = 4, p < .01), the dynamic 

model enabled significantly more accurate classifications (on average 70% versus 55%; 

paired t-test, df = 4, p < .0001). Furthermore, there was a significant (~5%) improvement in 

dynamic model word classification performance at 7T versus 3T (individually for Subjects 1 

and 3 across 10 permutations; paired t-test, df = 9, p < 10^−9). Figure 4B shows the effect of 

TR on classification performance. While classification accuracy was quite robust to changes 

in TR, using the slowest TR of 2000 ms did result in significantly poorer classification 

performance (paired t-test, df = 4, p < .01). No significant difference was found between the 

shorter TRs of 500 ms and 1000 ms.

Table 1 shows the top 50 most accurately classified words rank-ordered by the accuracy 

scores achieved with the static model (averaged across all subjects and field strengths). 

Dynamic model accuracy scores set in bold indicate a tendency for higher classification 

scores. Scores set in italics indicate similar classification accuracy (within 1%). Notably, 

both models are able to classify sentence onset (signified by the word “The”) with 100% 

accuracy. However, even for these 50 words best classified with the static model, the 

majority (66%) of them were classified with similar or better accuracy using the dynamic 

model. Table 2 shows the top 50 most accurately classified words rank-ordered by the 

accuracy scores achieved with the dynamic model. In this case, all words (except “The”) 

were, on average, more accurately classified by the dynamic word model.

Given that some words occurred more often than others across the 240-sentence stimulus 

set, we wanted to see whether this had any impact on individual word classification. To 

avoid bias in correlations, the top 7 most frequently occurring words, which occurred 

roughly an order of magnitude more often than the other 254 words, were removed from this 

analysis. The removed words were: “on”, “to”, “at”, “in”, “was”, “the”, and “The”. Figure 

5A plots the static model classification accuracy against number of word occurrences 

(within a given scan session) for these remaining 254 words (with each word represented by 

a circle). No significant correlation was found in this case (r = .05, p = .46). However, with 
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the dynamic model (Figure 5B), there was a significant positive correlation found (r = .36, p 
< 10^−8) such that words occurring more often tended to be classified more accurately. This 

suggests that words that are presented infrequently may classify better with the static model. 

This is confirmed in Figure 5C, where the difference in classification accuracy between 

dynamic and static models is shown to have a significant correlation with number of word 

occurrences (r = .28, p < 10^−5).

Similar plots comparing 3T and 7T dynamic model performance versus number of word 

occurrences are shown in Figures 5D–5F. Both 3T and 7T performances were significantly 

correlated with word occurrence (r = .31, p < 10^−6; r = .34, p < 10^−7, respectively). 

Permutation testing did not find the correlation difference between field strengths to be 

significant (paired t-test, df = 9, p = .14). The difference between 7T and 3T performance 

(Figure 5F) was not significantly correlated with word occurrence (r = .007, p = .91). 

However, the two words with greatest difference in accuracy in favour of the static model 

occurred relatively few times, suggesting they may be outliers due to random lapses in 

behavioural attention. In contrast, the two words with the greatest difference in accuracy in 

favour of the dynamic model occurred relatively often, suggesting a reliable benefit of 7T in 

terms of classification accuracy. For reference, the 50 words with greatest difference in 

accuracy (7T versus 3T) are listed in Table 3, with the 25 most in favour of the 7T dynamic 

model shown in the left-hand columns and the 25 most in favour of the 3T dynamic model 

shown in the right-hand columns.

Finally, to address the degree to which our classification results reflect lexical semantic 

information (as opposed to lower level stimulus features), classification accuracy for a given 

word pair was correlated with their semantic similarity and their word length difference. It 

was found that, for the dynamic model, words more semantically similar (as represented by 

human behavioural ratings in a 21-feature space; see Supplemental Data for details) resulted 

in significantly more misclassifications (r = .15, p < 10^−15). This was not the case for the 

static model (r = .001, p = .7). Encouragingly, the effect of word length difference was much 

weaker than the semantic similarity effect with the static model (r = .01, p = .003) and not 

significant with the dynamic word model (r = .003, p = .5). Full description of the analysis 

and scatter plots may be found in the Supplemental data.

Discussion

We found that including word timing information in models of the BOLD response in a 

multi-modal reading experiment significantly increases the amount of explained BOLD 

variance (~20% on average; Figure 3) in key language- and reading-related brain regions. 

Furthermore, pairwise word classification accuracy, across the 261 words presented in this 

study, improved by 27% (from 55% to 70% accuracy; Figure 4A). These results suggest that 

a substantial amount of word timing information is recoverable from the BOLD response. 

The advantage of the dynamic model over the static model appeared to be relatively robust 

to changes in effective TR (Figures 3 and 4B), but was significantly negatively impacted by 

TRs greater than 1000 ms. The greatest F-value improvement was found at a TR of 1000 ms; 

however, this did not result in significantly better classification performance when compared 

to the original TR of 500 ms. This suggests that the factor of two times more time samples 
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aided in classification enough to compensate the gain in CNR (and hence F-value) achieved 

by down-sampling. However, it is important to note that actual acquisition of data at the 

slower TRs would probably achieve worse results than what was achieved through the 

window averaged down-sampling shown here. While acquisition of slower TRs would gain 

CNR from additional T1 relaxation (larger Ernst angle) and lower multiband acceleration 

(Moeller et al., 2010; Setsompop et al., 2012; Xu et al., 2013), these effects are typically 

much smaller in comparison to down-sampling through averaging of time-samples (Chen et 

al., 2015; Feinberg et al., 2010).

Interestingly, we also found that, in terms of classification accuracy, the dynamic model was 

relatively more sensitive to the number of occurrences of a given word. While this could 

simply reflect the poorer performance of the static model in general, it also suggests that the 

dynamic model benefits from multiple samplings of specific words at different locations 

within sentences (which reduces co-linearity of the design matrix and beta estimate 

sensitivity to noise). This notion is consistent with the fact that words that the static model 

more accurately classified (relative to the dynamic model) tended to be words that occurred 

less frequently (Figure 5C).

In our study, two subjects underwent the exact same experiment at both 3T and 7T. We 

found that classification accuracy improved significantly at the higher field strength, with 

65% of all words being classified with similar or better accuracy and an average accuracy 

improvement of 6% across all words, from 68% to 72% (Figures 4 and 5). Given that we 

found no significant effect of field strength on relative (Figure 2) or absolute (not shown) 

improvements in F-value (dynamic versus static model), it is likely that our protocol was 

physiological noise dominated due to the relatively large voxel size, 32-channel coil array, 

and high field strength employed (Triantafyllou, Polimeni, & Wald, 2011). Traditionally, it is 

thought that there is little CNR advantage going to lower spatial resolutions at 7T, due to 

amplification of both signal and physiological noise, and thus no net CNR gain. However, by 

trading spatial resolution for temporal resolution, the relative contribution of thermal noise 

can be increased (i.e., given the smaller Ernst angle), making relatively lower spatial 

resolutions potentially relevant at high field strength – especially in the context of studying 

dynamic processes such as sentence comprehension. Future work to explore different 

combinations of temporal and spatial resolutions at high field, in conjunction with 

physiological denoising (Griffanti et al., 2014; Tong & Frederick, 2014), will be necessary 

for determining the protocol with optimal word decoding performance.

Our results suggest that there is more temporal information available at higher field strength, 

even for the same sampling rate (500 ms) and similar CNR conditions. Much of the 

improvements in classification accuracy at 7T, in our study, may have come from the 

improved BOLD linearity (Pfeuffer et al., 2003) as well as the increased sensitivity to 

capillaries (Duong et al., 2003; Yacoub et al., 2001) found at higher field strengths. Given 

that capillaries respond faster (Hulvershorn et al., 2005) and more linearly (Zhang, Yacoub, 

Zhu, Ugurbil, & Chen, 2009) than large veins, it would make sense that increasing 

sensitivity to them by going to higher field strength would improve decodability of fine-

grained temporal information. Consistent with these arguments is the fact that some of the 

words showing greatest classification accuracy improvement at 7T were frequently 
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occurring words that would have more potential for nonlinear, temporal interactions (Figures 

5D–5F).

While the BOLD non-linearity concerns intuitively apply to quick successive repetitions of 

the same stimulus or word, they also apply to different but similar stimuli, which elicit 

similar spatial patterns of brain activity (Grill-Spector & Malach, 2001). For example, the 

improved linearity found at 7T could explain why similar concepts were found to have 

improved classification (Table 3; e.g., “priest” and “church”; “worker”, “editor”, and 

“lawyer”). Though some of the improvements found, for example, in emotional words (e.g., 

“angry”, “lonely”, “tired”, “peaceful”), while arguably of similar concept dimension, could 

potentially be explained by improved CNR at 7T in emotion-processing regions such as the 

amygdala.

Conclusions

In our multi-modal sentence reading experiment, substantial word timing information was 

recoverable from the BOLD signal. Accurate and precise modelling of temporal events is 

key to optimally probing brain function as well as maximizing explained variance and 

decoding accuracy. Future studies with additional subjects and more advanced modelling of 

word semantics as well as BOLD nonlinearities will be important to furthering the results 

presented here. With proper modelling of BOLD non-linearities and the shorter TRs 

achievable with slice-accelerated fMRI, it may be possible to uncover additional temporal 

information at even finer temporal resolutions (Ogawa et al., 2000).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of general linear model (GLM) models for example sentence data (“The doctor 

drove the car.” and “The dog ran in the park.”). The static word model assumes that all 

words of a given sentence are read simultaneously at trial onset. The dynamic word model is 

the same as the static model but with the timing of individual words preserved. [To view this 

figure in colour, please see the online version of this Journal.]
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Figure 2. 
Mean difference between dynamic and static model F-values for a representative subject at 

3T. Colour range from red to yellow represents F-value differences from 0.25 to 2, 

respectively. [To view this figure in colour, please see the online version of this Journal.]
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Figure 3. 
Ratio of dynamic and static model F-values. Data sets using 1.0-s and 2.0-s repetition times 

(TRs) were simulated from the 0.5-s TR data by down-sampling after window averaging. 

[To view this figure in colour, please see the online version of this Journal.]
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Figure 4. 
Pairwise word classification performance. (A) Static versus dynamic model. (B) Dynamic 

model with repetition times (TRs) = 0.5, 1.0, and 2.0 s. Data sets using 1.0-s and 2.0-s TRs 

were simulated from the 0.5-s data by down-sampling after window averaging. [To view this 

figure in colour, please see the online version of this Journal.]
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Figure 5. 
Classification performance versus number of word occurrences. (A) Static model. (B) 

Dynamic model. (C) Dynamic minus static model. (D) Dynamic model 3T only. (E) 

Dynamic model 7T only. (F) Dynamic model 7T minus 3T.
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Table 3

Words with most extreme differences in classification accuracy: 7T versus 3T.

7T – 3T 7T – 3T

“angry” 51.65 “shiny” −50.40

“wealthy” 46.93 “white” −49.27

“wrote” 43.20 “ran” −32.97

“yellow” 41.57 “ended” −26.03

“worker” 40.52 “store” −25.86

“editor” 39.79 “mouse” −25.80

“about” 38.89 “ball” −25.63

“lonely” 35.73 “shouted” −23.91

“fixed” 33.83 “minister” −23.91

“flew” 33.39 “listened” −23.81

“new” 32.68 “small” −23.10

“water” 32.51 “red” −21.92

“tired” 31.67 “green” −21.40

“loud” 30.57 “ticket” −21.09

“church” 29.10 “jury” −19.06

“with” 28.74 “black” −18.28

“peaceful” 28.07 “bird” −17.99

“stayed” 27.87 “woman” −17.78

“lawyer” 27.82 “drew” −17.01

“to” 27.11 “met” −16.82

“heavy” 25.34 “fence” −16.80

“near” 25.31 “marched” −16.63

“street” 24.87 “morning” −15.94

“priest” 24.83 “island” −15.84

“long” 24.81 “army” −15.65
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