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ABSTRACT

One practical reason that intelligent agents might learn to represent causal struc-
ture is that it enables flexible adaptation to a changing environment. For example,
a causal model can enable rapid generalization of behavior in light of changing
circumstances or goals. In this project we examine human goal flexibility when
interacting with dynamic environments. Contrary to our predictions, information
about changing goals affected neither participant ability to infer causal structure
nor participant success in controlling the dynamic environment. These findings
were corroborated by participants being better fit by models describing them as
utilizing minimally complex, reactive control policies. The results show how de-
spite being incredibly adaptive, people are in fact computationally frugal, mini-
mizing the complexity of their representations and decision policies even in situa-
tions that might warrant richer ones.

1 INTRODUCTION

Considerable effort in machine learning has focused on how to infer causal structure between vari-
ables. The value of this approach is often framed as enabling human interpretable systems. However,
the way that humans learn about and reason with causality remains poorly understood. While it has
been shown that in some sufficiently simple scenarios people are able to infer abstract causal struc-
ture (Sloman, 2005), what is not known is the extent to which people leverage causal structure in
more complex, time-varying, continuous settings. For example, operating room doctors receive con-
tinuous readings of blood pressure, heart rate, and respiration and must use their understanding of
how these factors influence each other to take actions to keep patients healthy. In this project we
study the conditions under which people spontaneously infer causal structure in continuous dynamic
systems. Our hope is that studying the cognitive mechanisms that people employ in these situations
can give insight into building more adaptive and intelligent machines.

The central issue in this report concerns how complete people’s representations of the environment
are. For example, some recent work has found that people represent only the minimal amount of
structure needed to achieve their goals (Davis et al., 2018). In other words, instead of developing
complete models of causal systems people seem to learn the minimal amount necessary to achieve
good performance in a given task. However, one argument is that people will adopt more compre-
hensive learning strategies when they must use their causal knowledge in multiple ways. To evaluate
this claim, we attempted to induce spontaneous causal learning by giving people expectations about
either static or changing goals, under the theory that having a richer representation of the environ-
ment is of higher utility when you must act in service of multiple goals rather than one.
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2 METHOD

Participants. 100 participants (66 male; age M = 35.5, SD = 9.7) were recruited from Amazon
Mechanical Turk. For a task of approximately 30 minutes they were paid $3, with additional op-
portunity for bonus (M = 0.57, SD = 0.52). Participants were randomly assigned to one of two
conditions, with 50 in each.

Behavioral task. During the dynamic control task (Fig. 1A), participants interacted with a system
composed of three slider widgets arranged in a triangle. Participants initiated a 20 second trial by
pressing the “Start” button at the top of the page, whereupon the sliders began updating according
to an Ornstein–Uhlenbeck process (described below) at 100 ms increments. Participants could in-
tervene on one slider (the ‘control slider’, top) by pressing the ‘o’, ‘k’, and ‘m’ keyboard buttons to
make it move up by 10 arbitrary units, hold steady, or move down by 10, respectively. Manipulating
the control slider exerted causal influence on the two bottom sliders, and participants acted to try to
influence the (randomly selected) target slider to remain within the green reward region. Doing so
required continuous adjustment and reaction to the dynamics of the system.

After phase 1 of the task, participants reported the causal structure of the system they were interact-
ing with (Fig. 1B) by rating the casual strength of different pairwise links between the slides. Upon
responding to all potential causal links, participants initiated phase 2, which was either identical
to phase 1 (Static condition) or the Target and Auxiliary Sliders were switched (Switch condition).
See Fig. 1C. Participants were tested on 10 different causal graphs (patterns of causal influences
between the sliders) that were roughly balanced across factors such as the number of inverted and
regular links and the number of links between each variable. These graphs were presented in random
order.

Critical manipulation. Prior to the start of the experiment, participants completed an interactive
instruction that showed them demonstrations of the types of causal links (regular, inverse, and none,
see below) and instructed them that they would be rewarded $.01 for every 100ms the target variable
was within the target region. In addition, those assigned to the switch condition were instructed
that the target slider would change between phases. This is the critical manipulation in the study: do
expectations about the system changing in the future alter the type of causal learning that participants
spontaneously engage in while controlling the dynamic systems.

Causal Systems. The stimuli in our task were generated using a new approach for simulating
continuous causal systems. Briefly, Ornstein–Uhlenbeck (OU) networks represent causality with
autoregressive processes that move towards a basin point as a function of time (see Davis et al. (in
press) for a full explication of the generative process). When one variable is causally influenced by
another variable (as defined by the causal structure of the OU network), this is modelled by making
the effect’s basin point nonstationary, following some function of the state of its cause(s). We here
restrict these functions to the effect either asymptoting to a value equal to the cause’s value (“regular”
connections) or to the inverse of the cause’s value (“inverted” connections). If a variable has more
than one cause, we model it as attracted to the sum of the basin points defined by each of its causes.
To accommodate interventions we use the “Do()” operator (Pearl, 2009), whereby an intervened on
variable takes the assigned value with a probability of 1, ignoring all other endogenous or exogenous
factors.

3 RESULTS

We first analyze performance on the dynamic control tasks. On average, participants gathered 59.7
(SD=32.0) points out of a theoretical maximum of 200. A 2x2 ANOVA was performed to assess the
impacts of phase and condition on the amount of reward participants gathered, finding no evidence of
main effects for either condition (F (1, 196) = .35, p = .56) or phase (F (1, 196) = 1.95, p = .16).
In addition, there was no evidence of an interaction between phase and condition, F (1, 196) =
.04, p = .84.

On the explicit causal queries that followed phase 1 of the dynamic control task, participants were
above chance (.33) at identifying causal links (M=.43, SD=.10), t(99) = 10.3, p < .001. However,
contrary to our prediction, we did not find evidence of a difference between the static (M = .44, SD
= 0.10) and switch (M = .42, SD = 0.09) conditions, t(98) = .72, p = .48.
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Figure 1: Experiment design. (A) Dynamic control task. Control slider remains the same across
the experiment, Target Slider and Auxiliary Slider randomly chosen per trial. Green reward region
also randomly chosen. (B) Causal query. Participants categorized the four potential causal links
into “regular”, “none”, or “inverse” causal links. (C) Experiment flow. In the Switch condition, the
Auxiliary and Target Slider were switched in phase 2 of the dynamic control task.

4 MODELING

The descriptive results suggest that our manipulation of expected goal flexibility did not elicit differ-
ent structure learning strategies. We now test this result by comparing people to models that make
different assumptions about the extent to which people represent causal structure in our task.

Proportional-Integral-Derivative controller. The Proportional-Integral-Derivative (PID) con-
troller acts on a function of its error between desired and observed outcomes. It has been successful
in accounting for human control behavior (Davis et al., 2018; Ritz et al., 2018), although it has not
been tested in environments with changing goals. The PID controller computes a history of distances
from its state to a desired setpoint, and performs some simple operations on this buffer. In particular,
it computes a weighted sum of (P): its current distance to setpoint, (I): its history of distances to the
setpoint over some buffer, and (D): the derivative of its movement towards the setpoint, computed as
the current error minus the error on the previous timepoint. The PID recommends an action with the
same sign as the sum of its errors (e.g. a large positive sum would recommend the action ‘o’ in our
task). One additional complication of our task is that the PID must learn the relationship between
actions and outcomes. We model this as a simple timelagged correlation between control and target
variables, of the form ρ(Controlt−1, Targett). The sign of this learned correlation modifies the
sign of the error term, such that a negative correlation negates the computed sum of errors.

Model-based controllers. We also compare participant actions and causal judgments to two model-
based controllers—the Causal Model Based Controller (CMBC) and the Local Computations (LC)
controller. The CMBC agent, at each timepoint, inverts the generative OU model to optimally
estimate the probability of there being causal connections between sliders (see Davis et al., in press).
The LC model is more limited, evaluating the individual contribution of each variable to each other
variable’s value, ignoring the possible contributions of other links. In other respects the LC model is
identical to the normative model. The causal models use their online estimate of the causal structure
of the environment to act. In particular, at each timepoint they elaborate a full decision tree of
possible actions (‘o’, ‘k’, ‘m’, or nothing) over the next three timepoints, and assign an expected
value to each action that reflects the maximum expected reward over all following decisions.

Model evaluation. We evaluate the models on two criteria. The first is on their ability to predict
the participants’ explicit causal judgments. For this metric, the two model-based controllers have
a single per participant softmax τ parameter of their posterior distribution over causal graphs, fit-
ted to maximize the log-likelihood of participant causal judgments. The PID model’s two fitted
per participant parameters were (a) a significance threshold, where the PID infers a causal link if
the correlation between control and target variable drops below a fitted significance level, and (b)
a lapse rate, which models participants as responding according to PID’s predictions with some
probability. The PID learns nothing about other variables, and so we assume random responding
on all other potential links. For the dynamic control task, all models were fit with (a) a persever-
ance parameter reflecting the probability of repeating the action made on the previous timepoint,
and (b) a softmax τ parameter, which maximizes the log-likelihood of participant actions. For the
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Figure 2: Modeling results. (A) Mean Bayesian Information Criterion value per participant on the
Causal Query. (B) Number of participants best fit as a function of BIC. (C) Mean Bayesian Informa-
tion Criterion value per participant on the Dynamic Control Task. (D) Number of participants best
fit as a function of BIC.

model-based controllers these operations were performed on normalized expected values. For the
PID these operations were performed on a one-hot vector of its favored action at that timepoint.

Modeling results. Fig. 2 shows the modeling results, clustered into causal learning performance
(panels A and B) and dynamic control performance (panels C and D). The PID model provided
the best account of participant judgments of causal structure, both in overall BIC as well as per
participant fits. These results confirm that participants attended to the direct impact of their actions
on the control variable but not the system’s causal structure. The PID was also the most accurate in
predicting participant actions, according to both BIC and the number of participants best fit (Figs. 2C
and 2D). As in the descriptive results, the modeling results reflect no differences across conditions.

5 DISCUSSION

Learning causal structure is important to acting effectively in the world. In this project we attempted
to explore under which conditions people will invest their cognitive resources to do so, especially
in the context of a dynamic control task. We specifically attempted to manipulate expectations
of changing goals under the idea that learning robust representations is motivated by the need to
generalize to new situations. Our results gave little evidence that this manipulation fundamentally
altered the representational strategy of our human participants. Instead, people seemed to use a
simpler, reactive control policy (a PID-type controller).

An important factor that was likely to have contributed to this result is the simplicity of the task. In
general, we suspect that subjects found discovering the relationship between the control and target
variables relatively straightforward. As a result, the potential performance advantage of learning the
system’s causal structure during phase 1 so that it could be applied to performance during phase
2 was likely to be modest. Our conjecture is that, in this task, minimal representations were suffi-
ciently rewarding to disincentivize more effortful causal-based strategies. These results suggest that
people balance the efforts and rewards of developing causal knowledge. Building an understand-
ing of the factors affecting people’s spontaneous causal learning may help machine learning models
adaptively develop causal knowledge in response to situational factors such as potential for reward
or computational limitations.
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