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Abstract
One goal of cognitive science is to build theories of
mental function that predict individual behavior. In this
project we focus on predicting which word pairs in a list
will be remembered at some point in the future. Contem-
porary approaches to this problem primarily utilize be-
havioral measures such as performance on quiz ques-
tions or judgements of learning. Our central hypothe-
sis is that better prediction will come by jointly modeling
both neural and behavioral data mediated by a compu-
tational cognitive model which captures the dynamics of
memory retrieval over time. We lay out a framework the-
ory for combining neural and behavioral data and present
some preliminary data and simulations supportive of our
approach.
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Introduction
We develop a computational model which can predict which
memories will be remembered on a later test based on obser-
vations of both behavior and neural signals. Cognitive neuro-
science has identified a number of neural correlates of suc-
cessful memory formation (Davachi, 2006). Complementing
this work are cognitive models of memory that simulate the dy-
namics of learning and forgetting over time to predict whether,
given a particular study history, a person is likely to have
learned some piece of information (Atkinson, 1972; Corbett
& Anderson, 1995). Combining such models with memory-
related neural signals in a statistically optimal fashion could
provide more powerful tools for understanding the links be-
tween the brain and behavior at the level of individuals (Turner
et al., 2013).

To this end, we develop a neurally informed hierarchi-
cal Bayesian model of memory acquisition and decay. Our
generative model adopts the three-state Markov model of
mnemonic status first introduced by Atkinson (1972). Each
memory could be unknown (U), in a transition state (T), or
permanently learned (P) (see Figure 1). Depending on the
state, we further assume an observable ”emission” which re-
flects the pattern of brain activity associated with each la-
tent state (similar to a hidden markov model, Rabiner, 1989).
These observable emissions could accommodate many types
of neural data, but here we focus on fMRI BOLD signal.
Given a a prior, Πt=0 over these latent memory states S =
{sU ,sT ,sP} we can simulate a forward model of how the mem-
ory evolves. Transition probabilities, T , determine the proba-
bility of a memory moving between the different states at each
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Figure 1: Structure of three state Markov model showing latent
memory states, the allowable transitions between them during learn-
ing and forgetting, and the parameters governing those transitions.

point in time. Observable emissions associated with each
state, E, determine the probability of observing data (behav-
ioral or physiological) given a latent mental state. Given these
parameters we can compute a posterior probability over states
at any past, present, or future time and predict memory test
performance. Our goal is to optimize this model to predict, at
an individual level, memory performance at test for a held-out
sample of participants.

Preliminary methods and results
In the follow sections we briefly report the data we have used
to inform our initial modeling and some preliminary results.

Behavioral experiment

Participants (n=150) studied a set of 45 Lithuanian-English
word pairs presented five times each. Memory was tested in a
cued-recall test in which a Lithuanian word was presented and
participants attempted to recall the associated English word.
Participants were tested either 24h, 72h, or 168h after the end
of the study session and there were fifty participants in each
delay group. The purpose of this behavioral experiment was
to help estimate some of the parameters of the hierarchical
Bayesian model (e.g., the transition probabilities for individual
items over time).

Preliminary MRI analyses

In addition, we collected data from nine participants who un-
derwent fMRI scanning during study and were tested at a 72h
delay. The MRI data were preprocessed in standard ways
(e.g., slice time correction, motion correction, etc.). Estimates
of single trial activity were pulled from anatomical maps cover-
ing 38 distinct cortical regions of interest (ROI). The average
activity across voxels for each trial from each of these 38 re-
gions were used in later analyses.
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Figure 2: ROC curves for labeling memory performance (Remem-
bered or Forgotten) using brain data alone, a model estimated using
only behavioral data, and a model estimated using behavioral and
fMRI data.

Results

In our preliminary assessment of our approach we first consid-
ered how well activation within each ROI predicted single trial
subsequent memory performance. A Receiver Operator Char-
acteristic was created from each region which assesses how
the probability of hits (correctly predicting successful memory)
and false alarms (incorrectly predicting that a forgotten item
will be remembered) change with different thresholds of the
neural signal. Across regions we found that the most sensi-
tive region was in left inferior frontal gyrus (IFG) with a total
area under the curve (AUC) of .57 (see Figure 2, blue curve).

Next we fitted our hierarchical Bayesian model to the data
from both the MRI and behavior alone participants. The model
was estimated separately for each of the 38 ROIs using vari-
ational inference methods provided by STAN (Stan Develop-
ment Team, 2016) and the best performing model was consid-
ered for further analysis. To compare between the fitted mod-
els (i.e., ROIs) we computed, separately for each participant,
the predicted probability that a particular memory would be
remembered based on the posterior mean of the model. An
ROC analysis applied to these predicted probabilities from the
model (for the nine fMRI subjects) is also shown in Figure 2.
The AUC score of the combined model using the left IFG ROI
was .82 showing the value of the combined approach. The
combined model also outperformed (although marginally) a
model estimated only from the behavioral data from all partic-
ipants (AUC = .81).

Interestingly, the two different ways of assessing the rel-
evance of a brain region for predicting behavior (AUC of
the brain signal alone versus the posterior predictions of the
model using those brain signals) disagreed about which brain
regions contained the clearest signal. Figure 3 shows how the
rank ordered prediction of brain regions using the two meth-
ods are uncorrelated across the two AUC measures (p=.9).
This preliminary evidence indicates that the latent structure of
the model is able to leverage neural information relevant for
predicting memory in a different manner than would standard
univariate methods.
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Figure 3: Scatter plot of AUCs for each brain ROI using raw data
against AUCs from the models using the same ROIs.

Conclusion
In this project we have laid out the structure of a neurally in-
formed hidden markov model of memory. Preliminary analy-
ses have shown that combining a cognitive model with neural
data marginally improves our ability to discriminate later re-
membered from forgotten trials and that the model was able
to leverage different aspects of the ROI signal relative to a
brain alone activation threshold approach.

Although our performance gains for the brain+behavior
model compared to the behavioral model are modest, we find
these preliminary results encouraging given limitations of this
work (i.e., small data set to date). We have adopted, for now, a
coarse anatomically-driven approach to identifying ROIs and
summarized their activity in a simple univariate fashion. Fu-
ture work will aim to identify more robust neural signatures of
memory in our data set, considering the relationship between
multiple ROIs and the change in signal across multiple study
repetitions. In addition, this ongoing work currently contains
data from small number of fMRI participants, but as we gather
additional data our potential for success should improve.
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